

The 4th International Conference on Forests

23-25 September 2024 | Online

Exploring the Dynamics of Forest Biodiversity: Perspectives from a Four-Species Disease–Food Web Model MEGALA T¹, SIVA PRADEEP M¹, NANDHA GOPAL T¹, YASOTHA A², AASAITHAMBI T³ ¹SRI RAMAKRISHNA MISSION VIDYALAYA COLLEGE OF ARTS AND SCIENCE, COIMBATORE - 641 020, INDIA. ²UNITED INSTITUTE OF TECHNOLOGY, COIMBATORE - 641 020, INDIA. ³SRI SHANMUGHA COLLEGE OF ENGINEERING AND TECHNOLOGY, SALEM, INDIA.

INTRODUCTION & AIM

Forests are essential to Earth's ecosystems, supporting biodiversity and ecological balance. The dynamics of these ecosystems involve complex interactions among animals, fungi, and micro organisms. This study employs a prey-predator model with a Holling type II functional response to analyze how disease impacts predator-prey relationships within forest biodiversity.

MODEL EQUATION

$$\frac{dR}{dT} = e_1 R \left(1 - \frac{R+U}{K}\right) - \Im RU - \frac{\gamma RZ}{c_1 + R},$$

$$\frac{dU}{dT} = \Im RU - \frac{\beta UZ}{g+U} - d_1 U,$$

$$\frac{dZ}{dT} = \frac{\gamma f_1 n_1 RZ}{c_1 + R} + \frac{\beta f_2 n_2 UZ}{g+U} - aV - d_2 Z,$$

$$\frac{dV}{dT} = \frac{\gamma f_1 (1-n_1) RZ}{c_1 + R} + \frac{\beta f_2 (1-n_2) UZ}{g+U} + aV - d_3 V.$$

NON-DIMENSIONAL EQUATION

RESULTS & DISCUSSION

- The dynamical system of the equilibrium point E₀(0,0,0,0) is unstable.
- The dynamical system of the equilibrium point $E_1(1,0,0,0)$, E_2 , E_3 , E_4 , E^* is stable.

$$\begin{aligned} \frac{dr}{dt} &= r(1 - r - (1 + y_1)u - \frac{y_2 z}{y_3 + r}), \\ \frac{du}{dt} &= u(y_1 r - \frac{y_4 z}{y_5 + u} - y_6), \\ \frac{dz}{dt} &= \frac{y_{11} rz}{y_3 + r} + \frac{y_{12} uz}{y_5 + u} + y_9 v - y_{13} z, \\ \frac{dv}{dt} &= \frac{y_7 rz}{y_3 + r} + \frac{y_8 uz}{y_5 + u} - y_9 v - y_{10} v. \end{aligned}$$

$$t = eT, y_1 = \frac{\nabla K}{e}, y_2 = \frac{\gamma}{e}, y_3 = \frac{c}{e}, y_4 = \frac{\beta}{e}, y_5 = \frac{g}{e}, y_6 = \frac{d_1}{e}, \\ y_7 = \frac{f_1 \gamma (1 - n_1)}{e}, y_8 = \frac{f_2 \beta (1 - n_2)}{e}, y_9 = \frac{a}{e}, y_{10} = \frac{d_2}{e}, \\ y_{11} = \frac{\gamma f_1 n_1}{e}, y_{12} = \frac{\beta f_2 n_2}{e}, y_{13} = \frac{d_3}{e}, \\ r = \frac{R}{K}, u = \frac{U}{K}, z = \frac{Z}{K}, v = \frac{V}{K}. \end{aligned}$$

CONCLUSION

In this work, we investigated a four-species food web model in prey populations, in which a predator attacks both healthy and infected prey. Finally, this study aims to understand how changes in the environment can impact the dynamics of the ecosystem.

REFERENCES

Siva Pradeep M, Nandha Gopal T, Yasotha A. Dynamics and Bifurcation Analysis of an Eco-Epidemiological Model in a Crowley–Martin Functional Response with the Impact of Fear. *Eng Proc.* 2023; 56(1):329.

Megala, T.; Nandha Gopal, T.; Siva Pradeep, M.; Yasotha, A. A Diseased Three-Species Harvesting Food Web Model with Various Response Functions. *Biol. Life Sci. Forum* 2024, *30*, 17.

https://sciforum.net/event/IECF2024