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Abstract: Alkynylated and butadiynyl bridged phenothiazines with variable functionalization can be synthesized in good yields by cross-coupling and
condensation approaches. These oligofunctional heterocycles represent suitable building blocks for a novel type of redox addressable organic molecular
wire.

Phenothiazines have proven to be a pharmaceutically important class of heterocycles [1], and due to their pharmacological efficacy they are applied as
sedativa, tranquilizers, anti-epilectica, anti-tuberculotica, antipyretica, anti-tumor agents, bactericides and parasiticides [2]. Interestingly, phenothiazines
are able to cleave DNA upon photochemical induction [3]. Fairly early, it was recognized that the low oxidation potential of this class of tricyclic
nitrogen-sulfur heterocycles and their propensity to form stable radical cations play a key role in their physiological activities [4]. More recently, due to
their reversible oxidation [1,5] phenothiazine derivatives have become attractive supramolecular [6] and material scientific [7] motifs.

Recently, we have found a straightforward access to 3-mono- and 3,7-dialkynylated phenothiazines 1 and 2 that are interesting building blocks for redox
active oligomers [8]. Application of the Eglinton-coupling to monoalkynylated systems 1 (R1 = CH3, n-hexyl) gave rise to dumbbell-shaped butadiynyl-
bridged diphenothiazinyl compounds 3. Both heterocyclic fragments are electronically coupled according to cyclic voltammetry, absorption and emission
spectroscopy. Coupled redox systems integrated in conjugated chains could constitute a so far unknown class of redox addressable molecular wires, in
particular, for a redox manipulation of single molecules with nanoscopic scanning techniques [9,10].

However, the incorporation of redox dumbbells like 3 into conjugated oligomers, symmetrically or unsymmetrically, demands flexible functionality for
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cross-coupling and/or condensation approaches. Here, we communicate the syntheses and structures of alkynylated and butadiynyl bridged phenothiazines
with variable functional groups.

Synthetically, the exploitation of both aldehyde-alkyne transformations and cross-coupling methodologies opens flexible strategies to various
functionalizations. Recently, we could show that phenothiazine 3-carbaldehydes 4 [11] and phenothiazine 3,7-biscarbaldehydes 5 [12], respectively, can be
transformed to the alkynylated derivatives 6 and 7 according to the Corey-Fuchs protocol [13] in good yields (Scheme 1, method A).

Scheme 1

Alternatively, the fairly mild conditions of the Ohira-Bestmann transformation [14] of 4 and 5 to 6 [15] and 7 [15] opens a new access to alkynylated
systems with broad functional group tolerance (method B). Additionally, we have transposed the Sonogashira ethynylation [16] to the mono- and
dibrominated phenothiazines 8 [17] and 9 [18] to give the desired alkynylated derivatives after subsequent alkaline desilylation in one pot (method C). The
X-ray crystal structure analysis of 7a [19] (Figure 1) clearly shows the expected butterfly-conformation [1] of the phenothiazine core with dihedral angles
of 141.9 (C2-C1-S1-C12) and 140.0° (C5-C6-N1-C7). The bond lengths of the phenothiazinyl moiety and the triple bonds lie within the expected margins
as well (C16-C17: 1.17 A; C13-C14: 1.16 A). Furthermore, the N-methyl group adopts a pseudoequatorial arrangement.

Figure 1

The mono- and diethynylated compounds 6 and 7 are suitable building blocks for alkynyl-bridged phenothiazine based redox systems and, thus, the
Sonogashira coupling of 6a and 7a with 2-iodo thiophene and 2,5-diiodo thiophene, respectively, give rise to the formation of thienyl substituted (10 [20]
and 11) and thienyl bridged (12) ethynyl phenothiazines (Scheme 2). [15]



Scheme 2

In the UV/Vis spectra of the thienyl ethynylated phenothiazines 10 and 11 the absorption bands at 306 (10) and 302 nm (11) arise from transitions of the
phenylethynyl thiophene fragments as indicated by the doubling of molar extinction coefficients. However, the longest wavelength bands at 354 (10) and
375 nm (11) can be attributed to p-p* transitions within the extended p-system, i.e. including the conjugation through the nitrogen atom.

Finally, an entry to several functionalized alkynylated phenothiazines could be disclosed by bromination of the phenothiazine 3-carbaldehydes 4 in acetic
acid to give 7-bromo phenothiazine 3-carbaldehydes 13 in good yields (Scheme 3). [21]

Scheme 3

With these unsymmetrically functionalized phenothiazines in hand now a selective functionalization of the bromo- or the formyl moiety could be
successfully performed. Thus, the Ohira-Bestmann reaction of 13a furnishes the bromo alkyne 14 (60 %) that could be oxidatively dimerized by the
copper mediated Eglinton coupling [22] to give the dibromo diyne 15 in good yields (Scheme 4). [15]



Scheme 4

Likewise, the Sonogashira coupling of 13 with TMSacetylene or phenylacetylene [23] gives rise to the alkynylated aldehydes 16 in decent to excellent
yields [24]. Finally, the Eglinton coupling of 16a and 16b leads to the formation of the diformyl diynes 17 [25] in good yields [15].

In conclusion, we could show that alkynylated bromo and alkynylated formyl phenothiazines are easily accessible upon applying the mild conditions of the
Ohira-Bestmann formyl-alkyne transformation or the Sonogashira coupling to the novel bromo formyl phenothiazine building block 13. Thus, the novel
functionalized redox dumbbells 15 and 17 can be used as suitable starting materials for further synthetic elaboration towards molecular wires via cross-
coupling and/or condensation strategies. Further studies directed towards polymer and oligomer syntheses with these novel ethynylated phenothiazines as
well as the investigation of the electrochemical and photochemical behavior are currently underway.
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