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1950s: Emergence of Artificial Intelligence (AI) as a
field of study.

1980s–1990s: Growing interest in applying AI
techniques across various clinical settings in
healthcare.

2010s: Rapid expansion of AI-driven applications
in healthcare, revolutionizing diagnostics,
treatment planning, and patient care.

2010s–Present: Increasing use of AI and
computational models to optimize scaffold design
and enhance tissue regeneration strategies.

Significance of study: Reverse engineering of wound healing scaffolds via computational modeling

Predicting miscibility of polymer blends1

Miscibility: one of the key factors affecting the structure and properties of
a polymer blend.

Two colored concentration ellipses IM and PM (size of ellipses determines by a 0.95
probability level). Principal component analysis (PCA) biplot for PC1 (29.1% explained
variability) and PC2 (19.8% explained variability) of polyester/polysaccharides and
polysaccharides/polyamides blends.

Model performance for Random Forest classifier

 Accuracy: 96.1% for the training set; 95.7% for the
testing set.

 Testing set included 47 polymer blends.

 14 out of 15 immiscible blends were predicted
correctly.

 31 out of 32 partially miscible blends were
predicted correctly.

Predicting cell-material-interactions during the 
inflammation and proliferation phases2

Fiber diameter and pore diameter were identified
as key parameters influencing in vitro cell
proliferation and inflammatory responses.

Cell responses prediction using Random Forest regression models

Confusion matrix for Random Forest

Fibroblast cell proliferation

Accuracy: 63 % for the training set; 61 % for the testing set.

 Polymer blends affect scaffold properties, influencing cell-material interactions.

 Fiber and pore diameters are critical for promoting cell growth and penetration
in scaffolds. Predicting specific cell-scaffold interactions can enhance
therapeutic outcomes.

 Future work: investigating graph theory to characterize complex nanofiber
networks and using molecular docking to study interactions between scaffold-
loaded biomolecules and target proteins.

CellProfiler and CellProfiler Analyst to classify 
macrophage phenotypes

Preliminary deep learning pre-trained modeling to 
classify macrophage cells

With 10 epochs, the VGG16 and ResNet50 models generated
validation accuracies of 90.3% and 91.4% respectively.
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Results & Discussion

Introduction

1970s: 1st generation of scaffolds – Bioinert materials
introduced.

1980s: 2nd generation – Development of degradable
scaffolds.

1990s: 3rd generation – Introduction of bioactive
scaffolds.

2000s: 4th generation – Scaffolds capable of
encapsulating genes, cells, and molecules.

2010s: 5th generation – Stimuli-responsive scaffolds.

Today’s challenges:

 In-depth understanding of polymer-polymer and 
cell-material interactions on scaffolds for tissue 
regeneration.

 Guide scaffold design and improve performance.

 Sustainable and efficient research process.

TNF-α levels in macrophages 

Accuracy: 93 % for the training set; 89 % for the testing set.

Conclusion & Future Work


