

The 4th International Electronic **Conference on Nutrients**

16–18 October 2024 | Online

Chromatographic Analysis of Bioactive Metabolites from a Traditional Food Combination of (semi) Arid Regions – *Panchkuta***: Insights for Sustainable Functional Foods Development**

Tripti Joshi, PR Deepa, and Pankaj Kumar Sharma

Biochemistry and Enzyme Biotechnology Lab, Department of Biological Sciences, Birla Institute of Technology and Science (BITS), Pilani, Pilani Campus, Rajasthan - 333031, India

RESULTS AND DISCUSSION

Table 1. Bioactive metabolites in <i>Panchkuta</i> identified by GC-MS analysis				
S.No.	Rt (min)	Area (%)	Tentative identified metabolites	Type of compound
1.	2.664	1.41	2-ethyl-3-methylbutanal	Aliphatic aldehyde
2.	4.501	0.27	p-cymene	Monoterpene
3.	6.100	0.36	Dodecane	n-alkane hydrocarbon
4.	11.261	0.11	Heneicosane	Alkane hydrocarbon
5.	12.410	0.10	Eicosane	Alkane
6.	15.181	3.48	n-Hexadecanoic acid (Palmitic acid)	Fatty acid
7.	16.304	0.62	9-Octadecenoic acid, methyl ester	Fatty acid methyl ester
8.	16.398	0.94	Phytol	Diterpene alcohol
9.	16.584	2.77	9,12-Octadecadienoic acid (Linoleic acid)	Fatty acid
10.	16.623	4.83	Oleic acid	Fatty acid
11.	16.757	2.32	Octadecanoic acid (Stearic acid)	Fatty acid
12.	18.456	0.83	Methyl 5,11,14-eicosatrienoate	Fatty acid methyl ester
13.	18.476	0.88	Glycidyl oleate	Carboxylic ester and epoxide
14.	18.586	0.45	Pentatriacontane	Alkane hydrocarbon
15.	18.745	0.10	Phthalic acid, di(6-methylhept-2-yl) ester	Aromatic carboxylic acid ester
16.	19.440	2.58	Tetrapentacontane	Alkane hydrocarbon
17.	19.924	0.37	Squalene	Triterpenoid hydrocarbon
18.	20.288	8.06	Dotriacontane	Alkane hydrocarbon
19.	21.108	0.44	gamma-Tocopherol	Vitamin
20.	21.337	0.96	Triacontanol	Fatty alcohol
21.	21.571	0.66	alpha-Tocopherol-beta-D-mannoside	Vitamin
22.	22.436	5.61	Campesterol	Phytosterol
23.	22.630	6.70	Stigmasterol	Phytosterol
24.	22.728	5.25	1-Hexacosanol	Fatty alcohol
25.	22.978	2.13	26,27-Dinorergosta-5,24-dien-3-ol, (3 beta)-	Phytosterol
26.	23.165	14.05	gamma-Sitosterol	Phytosterol
27.	23.255	4.13	Stigmasta-5,24(28)-dien-3-ol, (3.beta,24Z)	Phytosterol
28.	23.751	1.17	Lup-20(29)-en-3-one	Triterpene
29.	24.041	1.92	Lup-20(29)-en-3-ol, acetate, (3 beta)-	Triterpene
30.	24.322	0.23	gamma-Sitostenone	Phytosterol

- 'Panchkuta', a traditional food in (semi) arid regions in India, is a blend of fruits/pods of five plants, namely, Prosopis cineraria, Cordia dichotoma, Capparis decidua, Acacia senegal, and Mangifera indica.
- These plants are mixed in varying ratios according to flavor and geographical availability.
- We have previously reported that the binary combinations of these plants act synergistically and enhance their antioxidant activities.

METHODOLOGY Purification PC: AS: CD: CDI: MI 14:13:8:4:1 **Dried powder of** Panchkuta **Extraction and Phenolic enrichment** Hexane extract of crude Methanolic extract of using Amberlite crude Panchkuta (PCr) Panchkuta (HPCr) **XAD7HP (AMF) Bioactivity and Analytical** Antioxidant Activity Techniques **TLC Analysis GC-MS** Analysis **LC-MS** Analysis

RESULTS AND DISCUSSION

Phytochemical fingerprinting by Thin Layer Chromatography (TLC)

b)

Figure 2: a) TLC of five plants included in *Panchkuta*, and **b**) TLC of phenolics enriched AMF, observed under 365 nm after spraying with Natural Product Reagent (NPR)

Bioactive metabolites in *Panchkuta* identified by LC-MS analysis

Figure 3: LC-MS chromatogram of a) methanolic extract of crude *Panchkuta* (PCr), and **b**) phenolics enriched AMF

CONCLUSIONS/ FUTURE WORK

Antioxidant activity of crude and phenolics enriched *Panchkuta* extracts

Figure 1: Antioxidant activity hexane and methanolic extracts of Panchkuta measured DPPH AMFassay. Amberlite Methanolic Fraction, methanolic extract of Panchkuta, HPCrof crude extract Panchkuta. Methanolic showed extracts antioxidant activity

The antioxidant activity of the Panchkuta could be attributed to the presence and synergistic interactions of phytoconstituents, including gamma-sitosterol, stigmasterol, and dotriacontane in the hexane extract, and coumaric acid, luteolin, apigenin, and tiliroside in the methanolic extract.

- The TLC analysis showed the presence of various classes of phenolics (flavonols, isoflavones, and flavones) when observed under 365 nm. -4/0
- This study can contribute to address a few of the Sustainable Development Goals.
- The local communities continue to use their traditional knowledge to ensure food and nutritional security even in these (semi) arid regions.
- Further purification may lead to identifying and validating potential compounds responsible for the bioactivity. Additionally, these results will be validated in *in vitro* cell culture system for anti-lipid peroxidative property and diseases such as diabetes, obesity, and arthritis.

REFERENCES

- Natarajan TD, Ramasamy JR, Palanisamy K. Nutraceutical potentials of synergic foods: a systematic review. J Ethn Foods. 2019;6:27. https:// doi.org/10.1186/s42779-019-0033-3.
- Joshi, T., Agrawal, K., Mangal, M., Deepa, P. R., & Sharma, P. K. (2024). Measurement of antioxidant synergy between phenolic bioactives in traditional food combinations (legume/non-legume/fruit) of (semi) arid regions: insights into the development of sustainable functional foods. Discover Food, 4(1), 11. https://doi.org/10.1007/s44187-024-00082-y

Acknowledgements- Authors are grateful to the administration of Birla Institute of Technology and Science (BITS), Pilani–Pilani Campus for infrastructural and logistic support. Tripti Joshi is grateful to University Grants Commission (UGC), New Delhi, India, for providing the Senior Research fellowship (SRF).