

The 1st International Online **Conference on Photonics**

14-16 October 2024 | Online

Low-Power Optogenetic Excitation and Suppression of Human Ventricular **Cardiomyocytes Expressed with ChRmine and HcKCR1**

Gur Pyari, Himanshu Bansal and Sukhdev Roy* Dayalbagh Educational Institute, Dayalbagh, Agra, Uttar Pradesh, India sukhdevroy@dei.ac.in

OBJECTIVE

To design a novel method for efficient optogenetic control of Ventricular Cardiomyocytes (HVCMs) with Human newly discovered ChRmine and HcKCR1 Channelrhodopsins.

CARDIAC OPTOGENETICS

Technique for controlling genetically modified HVCMs with light.

Importance

Revolutionary Technique

Relatively Low Invasiveness

Cardiac Electrophysiology

Applications

- Restoring Pacemaking Ability
- High Spatiotemporal Resolution Terminating Cardiac Arrhythmias

Mechanism Excitation and Inhibition depends on, which Protein is an ion channel that type of Opsin expressed into the cells. opens in response to blue light. Excitation SwiChR++ O Inhibition 100 ms GtACR1 GtACR2 0.1 Opsin-expressed in rat neuron for oChR HcKCR Cheriff ChR2_{TC} eKR2 O Arch3.0 controlling neural activity with light. $\stackrel{\square}{\cong}$ 8 0.01 ChroME eTsChR 0.001 450 500 550 600 Wavelength (nm) **Channelrhodopsins in Optogenetics** Insert the DNA into specific Deisseroth K., Nat. Neurosci. 18, 1213-1225, 2015 Take the gene for this protein. neurons in the brain. Emiliani V. et al., Nat. Rev. Methods Primers 2, 2022. **Recent Study (2023) Optical Pacing with ChRmine-expressing Rat Cardiomyocytes** Light pulse Article Open Access Published: 01 March 2023 5 Hz, 10-ms at 585 nm Cardiogenic control of affective behavioural state

RESULTS & DISCUSSION

THEORETICAL MODEL

Model of Opsin-expressing Human Ventricular Cardiomyocytes

 $I_{Opsin} = g_{opsin} \left(O_1 + \gamma O_2 \right) \left(V - E_{Opsin} \right)$

Equilibrium condition $C_1 + O_1 + O_2 + C_2 = 1$

Rate equations

$$\dot{O}_{1} = G_{a1}(\phi)C_{1} + G_{b}(\phi)O_{2} - (G_{d1} + G_{f}(\phi))O_{1} \qquad \dot{C}_{1} = G_{d1}O_{1} + G_{r}C_{2} - G_{a1}(\phi)C_{1}$$

$$\dot{O}_{2} = G_{a2}(\phi)C_{2} + G_{f}(\phi)O_{1} - (G_{d2} + G_{b}(\phi))O_{2} \qquad \dot{C}_{2} = G_{d2}O_{2} - (G_{r} + G_{a2}(\phi))C_{2}$$

Rate of Change in membrane potential

$$C_{m}\dot{V} = -I_{opsin} - I_{stim} - (I_{Na} + I_{to} + I_{K1} + I_{Kr} + I_{Ks} + I_{NaK} + I_{pK} + I_{NaCa} + I_{pCa} + I_{bCa} + I_{bNa} + I_{up} + I_{leak} + I_{rel} + I_{xfer} + I_{CaL})$$

CONCLUSION

- Formulated accurate theoretical models of optogenetic excitation and suppression of cardiac activity in HVCMs.
- Useful for designing compact, low-cost optical pacemaker.
- Upgraded to tissue and organ scales for getting pre-clinical insights.

REFERENCES

- Entcheva E. and Kay M. W. Nat. Rev. Cardiol. 18(5), 2021.
- Pyari G., Bansal H., Roy S. Pflug. Arch. Eur. J. Physiol. 1-25, 2023.
- Pyari G., Bansal H., Roy S. J. Physiol. 600(21), 2022.
- Bansal H., Pyari G., Roy S. Sci. Rep. 14, 11642, 2024.
- Bansal H., Pyari G., Roy S. J. Neural Eng. 19, 026032, 2022.

Govorunova et al., Nat. Neurosci. 25, 2022.

ACKNOWLEDGEMENT

Department of Science and Technology, India, for the award of the Senior Research fellowship to G.P. and R & D projects (CRG/2021/005139 and MTR/2021/000742) to S.R.

https://iocp2024.sciforum.net/