

The 1st International Online í

Magnetization manipulation using ultra-short laser pulses I

in ferromagnetic cells for spintronics applications

Pawel Steblinski¹, Tomasz Blachowicz^{1,2}, Andrea Ehrmann^{1,3}

² Institute of Physics—Center for Science and Education, Silesian University of *Technology, Gliwice, Poland*

¹ Virtual Institute of Applied Research on Advanced Materials (VIARAM)

[1] J.-G. Zhu, Y. Yan, Incoherent Magnetic Switching of $L1_0$ FePt Grains, IEEE Transactions on Magnetics 57, 3200809 (2021) [2] R. F. L. Evans, D. Hinzke,U. Atxitia, U. Nowak,R. W. Chantrell, O. Chubykalo-Fesenko, Stochastic form of the Landau-Lifshitz-Bloch equation, Physical Review B 85, 014433 (2012)

3 Institute for Technical Energy Systems (ITES), Faculty of Engineering and Mathematics, Bielefeld University of Applied Sciences and Arts, Bielefeld, Germany

14-16 October 2024 | Online

- Magnetization reversal processes and magnetization dynamics in general are of utmost importance for many spintronics applications, e.g. bit patterned media [1]
- Such ultrafast dynamics can be measured by pump-probe experiments with pulsed lasers: a strong pump laser excites a sudden change of the magnetization vector leading to magnetization precession, measured by the weak probe laser
- To simulate this process, a model has been developed based on the micromagnetic simulator MagPar-LLB
- Using simulated ultra-short laser pulses, we investigated a matrix of separate ferromagnetic cylindrical cells to prototype possible memory applications
- FePt cells immersed in an MgO layer for adequate thermal conditions, heat-transport was solved by the two-temperature model
- Simulations were performed using the micromagnetic Landau-Lifshitz-Bloch (LLB) equation and the finite element method (FEM)
- Calculations were carried out for different distances between cells and a variety of laser pulse durations and intensities
- The results inform about stability conditions for magnetization states and the possible spatial density of such memory devices

Introduction & Aim

Literature

[3] A.H. Morrish, The physical principles of magnetism (1965)

Simulation

Results

Conclusion

- 1. Stochastic LLB equation [2]: 1 $\overline{\gamma}$ dM dt $= [\dot{M} \times \dot{H}_{eff}] +$ α_1 $\frac{u_1}{|\vec{M}|^2}(M \cdot \vec{H}_{eff})M \alpha_2$ $\frac{u_2}{|\vec{M}|^2} [M \times [M \times (H_{eff} + R)]] + R_t$ \vec{M} magnetization, \vec{H}_{eff} effective field, α_1, α_2 damping factors, γ gyromagnetic factor
	- $2k_{\rm B}T$ ($\alpha_{\rm A} \alpha_{\rm B}$) $2k_{\rm B}T$ $\alpha_{\rm s}M$

3. Two temperature model [3]: $c_e \rho$ ∂T_e ∂t $= \lambda$ [$\frac{\partial^2 T_e}{\partial x^2}$ $\frac{\partial u}{\partial x^2} +$ $\partial^2 T_e$ $\frac{\partial^2 I_e}{\partial y^2} +$ $\frac{\partial^2 T_e}{\partial x^2}$ $\frac{\partial^2 I_e}{\partial z^2}] - G_e(T_e - T_l) + Q(x, y, z, t)$ $c_l \rho$ ∂T_l ∂t $= G_e (T_e - T_l)$

 $T_l = T_l(x, y, z, t)$ lattice temperature, Q heat density, c_e , c_l specific heat of electron gas and lattice, ρ material density, λ thermal conductivity, G_e electron-lattice coupling constant

> cells **Cu**

Fig. 1: (a) single cell reversal probability map, (b) laser impulse time-shape for *P* = 250 mW total power and $N = 10$ impulses;

 \rightarrow Reversal – indicated blue (Fig. 1a) – is obtained for laser powers of around 250 mW and 10-50 pulses

Fig. 2: (a) system of 9 cells reversal probability map, (b) laser impulse time-shape for *P* = 250 mW and *N* = 10 impulses; magnetization response (c) for the stimuli shown in (b) without reversal and (d) $N = 10$ impulses

 \rightarrow Reversal (blue area in Fig.

- Single separate short time laser impulse stimuli have no significant impact on single cell memory system
- A group of short time laser impulse stimuli may lead to reversal for nearly all examined laser impulse power cases
- For $N = 10$ impulses and a laser power $P \ge 0.2$ W, it is possible to obtain proper reversal with high probability close to 1 (blue color in Fig. 1a), while more pulses and higher power are required for 9-cell system center cell (Fig. 2a)

2a) is only obtained for high $0.7\frac{1}{50}$ $\frac{||\cdot||}{\text{time}(\text{ps})}$ enough laser powers and large enough numbers of impulses (here ~ 50 impulses, 750 mW laser power)

$$
\vec{R} = \sqrt{\frac{2 \kappa_B r_e (u_1 - u_2)}{\gamma \Delta t M_{s_0} V_s \alpha_1^2}} \vec{r}; \vec{r} = [r_x, r_y, r_z]; \vec{R}_t = \sqrt{\frac{2 \kappa_B r_e u_2 m_{s_0}}{\gamma \Delta t V_s}} \vec{r}_t; \vec{r}_t = [r_x, r_y, r_z];
$$

$$
r_{x, y, z} = \sqrt{-2 \log(x_1)} \sin(2\pi x_2); x_{1, z} \in rand(0, 1)
$$

$$
k_B \text{ Boltzmann constant}, T_e = T_e(x, y, z, t) \text{ electron gas temp.}, M_{s_0} \text{ saturation}
$$

magn., V_s stochastic vol., Δt integration step

2. Equilibrium magnetization M_{eq} equation [3]: $M_{eq}(\vec{r}, T) = n_{mb}gJ\mu_BnB_J(x) = M_{s_0}B_J(x)$ $B_J(x) =$ $2J + 1$ $\frac{1}{2}C$ ctgh($2J + 1$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ 1 $\frac{\pi}{2 J} c t g h($ \mathcal{X} $\frac{1}{2}$ dx dt = − $3JT_c$ $J+1$ dT_e $\frac{dI}{dt}B_J(x)/(T_e^2 3JT_eT_c$ $J+1$ $dB_j(x)$ $\frac{f^{(1)}}{dx}$

 n_{mb} Bohr magneton number, *g*-factor, *J* quantum number, μ_B Bohr magneton, *n* particle concentration, B_I Brillouin function

Material parameters for FePt, air, Cu and MgO from the literature. Cells: 10 nm height, 2.5 nm radius, center distance 6 nm, temperature 300 K

magnetization response (c) for the stimuli shown in (b) with magnetization reversal and (d) for $N = 10$ impulses (T_e/T_c) is the ratio of electron gas temperature to Curie temperature)

