

TAXONOMIC REVISION OF THE GENUS ANNONA NATIVE TO AFRICA USING SELECTED BARCODES LOCI (MATK,TRNL AND RBCL) BY

I.O.YUSUFF AND A.O. ONEFELI

Department of Forest Production and Products, University of Ibadan

A PAPER PRESENTED AT THE 3RD INTERNATIONAL ELECTRONIC CONFERENCE ON DIVERSITY: BIODIVERSITY OF ANIMALS, PLANTS AND MICROORGANISMS

OCTOBER, 2024

INTRODUCTION

- Traditional Taxonomy relies on morphology, making species identification challenging especially when they share similar traits (Lestari and Azrianingsih, 2019).
- Missing morphological traits can make identification difficult (Fitri, 2015).
- Different genera display variations, but species within a genus often look similar posing challenges for taxonomists using morphology alone.
- DNA barcoding reveals detailed information on variations of closely related species.
- DNA barcoding uses standardized Chloroplast markers to distinguish closely related species for conservation (Kang et al., 2017; Fatima et al., 2019).
- This study aims identify the species of *Annona* using chloroplasts markers such as matK, trnL and rbcL

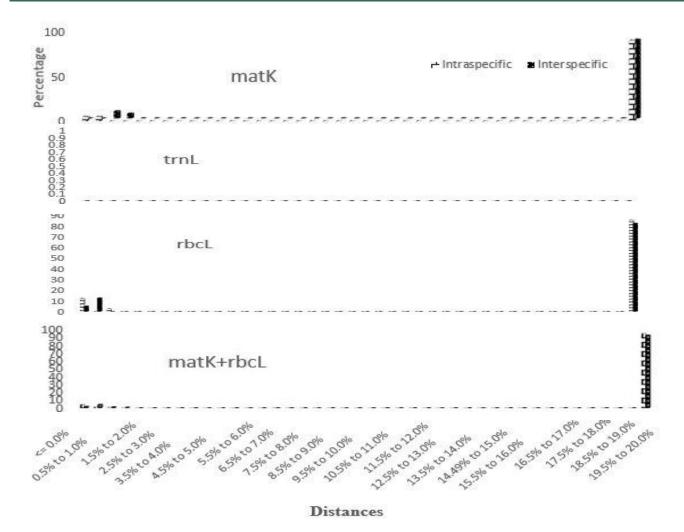
MATERIALS AND METHODS

- A total of 33 sequences were retrieved from the NCBI website (<u>https://www.ncbi.nlm.nih.gov</u>
- Sequence cleaning-MEGA 11
- Sequence alignment- Clustal W of the MEGA11 package
- Determination of match identification rate intraspecific and interspecific distances of each barcode- Taxon DNA software (Meier et al., 2008)
- Phylogenetic tree construction- Neighbour joining tree method with the Kimura 2-parameter substitution model (Kumaru et al., 2018, Onefeli, 2021)

RESULTS

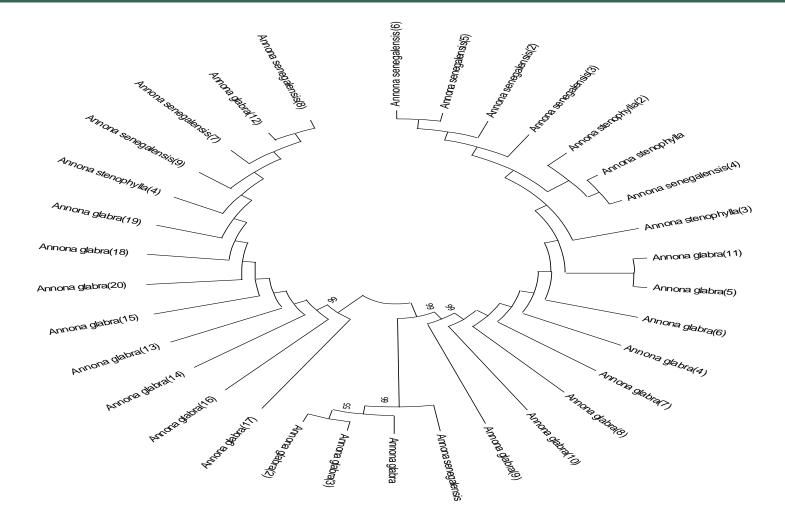
Characteristics of single and concatenated barcode loci of the Genus Annona

Variable/Barcode loci	matK	rbcL	trnL	matK+rbcL	matK+trnL	rbcL+trnL	matK+rbcL+trnL
Barcode length (bp)	1763	1463	903	1763	1774	1763	1763
Number of variable sites	17	12	2	743	129	600	1077
Parismony-Informative sites	8	2	0	408	586	125	630
Ranges of Intraspecific distances	0	0	0	0	0	0	0
Ranges of interspecific distances	0-0.015	0-0.010	0-0.009	0-1.480	0-1.550	0-1.640	0-2.340
Average intraspecific distances	0	0	0	0	0	0	0
Average interspecific distances	0.006	0.002	0.003	0.520	0.420	0.340	0.990



BEST MATCH AND BEST CLOSE MATCH IDENTIFICATION FOR SINGLE AND CONCATENATED BARCODES OF THE GENUS *ISOLONA*

Barcode loci	Best match			Best close match				
	Correct (%)	Ambiguous (%)	Incorrect (%)	Correct (%)	Ambiguous (%)	Incorrect (%)	No match closer than 3%	
MatK	69.23	0.0	30.76	38.46	0	15.38	46.15	
rbcL	31.25	31.25	37.50	31.25	25.00	25.00	18.75	
trnL	0	0	0	0	0	0	0	
MatK+rbcL	48.27	20.68	31.03	31.48	13.79	20.68	31.03	
matK+trnL	71.42	0	28.57	35.71	0	14.28	50.00	
rbcL+trnL	35.29	29.41	35.29	29.41	23.52	23.52	23.52	
matK+rbcL+t rnL	53.33	16.66	30.00	33.33	13.33	20.00	33.33	



BARCODING GAP WITH THE DISTRIBUTION OF INTER- AND INTRA-SPECIFIC DISTANCES

PHYLOGENETIC TREE

DISCUSSION

- While matK loci provide good identification, studies (Mishra et al., 2017) indicate single barcodes may not sufficiently distinguish closely related species like Terminalia spp."
- Combining trnL and matK chloroplast gene sequences is an efficient tool for plant species authentication and genotype identification (Awomukwu et al., 2015)."
- Barcodes with many variable sites (matk+rbcL, matK+trnL, rbcL+trnL, matK+rbcL+trnL) have low identification rates, aligning with Kavaliauskas et al. (2022) that highly variable loci don't ensure meaningful species discrimination."
- Research shows combining matK and other markers such as trnL provides higher resolution and better discriminatory performance than single markers (Li et al., 2019; Calleja-Cabrera et al., 2020)."
- High genetic diversity in phyletic groups, especially using the trnL barcode, may result from the open-pollinated nature of species (Rungis et al., 2019)."

CONCLUSION

The use of single barcode matK, rbcL and trnL however proved efficient in discriminating the species of the genera *Anonna*, also the concatenation of the three barcodes provided a tree that shows that the result of this study can be applied to the classification of the genus *Anonna* most especially where identification using morphological characterization is abortive. Nevertheless, further research should be done if there would be a new identification of the species that existed in different phylogeny.

THANK YOU

FOR

LISTENING