[A004]

Direct synthesis of a-hydroxy acids through selective oxidation of diols mediated by homogeneous and heterogeneous TEMPO

Maria Luisa Testa^{*}, Pamela Gancitano, Rosaria Ciriminna, Mario Pagliaro^{*}

Istituto per lo Studio dei Materiali Nanostrutturati, (I.S.M.N.-C.N.R.), sezione di Palermo, via Ugo La Malfa 153, 90146 Palermo, Italy; E-mail: testa@pa.ismn.cnr.it and mario.pagliaro@ismn.cnr.it

INTRODUCTION

a-Hydroxy acids are pivotal components in a variety of compounds with important biological activity.¹ Here we report an easy strategy which allows to synthesise a-hydroxy acids in a two-step oxidation process, involving first the *cis*dihydroxylation of a terminal alkenes (catalyzed by ruthenium) followed by subsequent oxidation with TEMPO either dissolved in the homogeneous phase or entrapped in a sol-gel matrix. This work extends what we recently found concerning the synthesis of amino hydroxy acids by oxidation of the primary hydroxyls in aminodiols.²

RESULTS AND DISCUSSION

The diols **1a-d** were obtained starting from terminal alkenes by using the oxidative ruthenium catalysis protocol.³ Hence, using a biphasic solvent system of ethyl acetate, acetonitrile and water (3:3:1 volumes ratio) in the presence of 0.07 mol equiv. of RuCl₃ $(H_2O)_3$ and 1.5 mol equiv of NaIO₄ at 0-5 (C, V) very rapid dihydroxylation (within minutes) of olefins occurs giving *syn*-diols (1) in good yields. When aromatic alkenes are used, the corresponding ketones (2) are isolated in very low yield due to concurrent oxidation of the benzylic alcohol moiety.

R ₁	► RuCl3 , NaIO4 , CH3CN, EtOAc, H2O 0°C, 0.5-3 min	R ₂ HO OH +	
		la-d	2a,b

Table 1. Dihydroxylation of alkenes with the Shing s protocol				
Diols	R ₁	R ₂	Time (min)	diol / ketone*
1a	Ph	CH ₃	0.5	97 : 3
1b	4-CIPh	CH ₃	0.5	94:6
1c	C ₄ H ₉	Н	3	100 : 0
1d	C ₃ H ₇ CH(OH)-	Н	3	100 : 0

*calculated by GC-MS. All the diols were identified by usual spectroscopic methods including NMR and data correspond to those of the literature

The reactions are very rapid. Hence, when diol **1a** was synthesised, only 0.04 mol equiv of $\text{RuCl}_3 \bigoplus (\text{H}_2\text{O})_3$ and 0.5 min were necessary to obtain the diol, with longer reaction times or the classical 0.07 mol equiv of $\text{RuCl}_3 \bigoplus (\text{H}_2\text{O})_3$ leading to ketone as the only product, as a result of the competitive glycol cleavage. When aliphatic alkenes (1-hexene and 1-hexen-3-ol) were used only the desired diols **1c,d** were isolated and no traces of cleavage products were found.

Identification	of diols
1a	FTIR spectra [v cm ⁻¹ 3404 (OH); 3088-2876 (ArH, CH)] mass spectrum [m/z (%) 152 (1); 121 (100); 43(85)] m.p. 43-44 � C
1b	FTIR spectra [v cm ⁻¹ 3418 (OH); 2978-2932 (ArH, CH); 829 (C-Cl)] mass spectrum [m/z (%) 186 (1); 155 (88); 43(100)]
	¹ H-NMR [δ : 1.40 (s, 3H); 5.02 (s, 2H); 7.34 (d, <i>J</i> = 7.9 Hz, 2H); 7.49 (d, <i>J</i> = 7.9 Hz, 2H)]
	¹³ C-NMR [δ : 26.05 (q); 70.34 (t); 73.47 (s); 127.44 (d); 127.56 (d); 130.80 (s); 146.50 (s)] m.p. 69-70 �C
1c	FTIR spectra [v cm ⁻¹ 3383 (OH); 2932-2862 (CH)] mass spectrum [m/z (%) 87 (36); 69 (100); 57 (12); 43 (22); 41(44)] oil
1d	FTIR spectra [v cm ⁻¹ 3381 (OH); 2961-2874 (CH)] mass spectrum [m/z (%) 103 (8); 91 (4); 73 (61); 61 (17); 55 (100); 44 (66); 43 (54)] m.p. 65-67 �C

Diols thereby obtained were further oxidised with TEMPO/NaOCl at 0 \clubsuit C to afford the corresponding a-hydroxyacids exploiting the TEMPO selectivity for primary alcohols at alkaline pH.⁴

Table 2.	TEMPO-mediated	oxidation of o	diols in	homogeneous	phase

Acids	R ₁	R ₂	% yield acid*	% yield ketone*
3 a	Ph	CH ₃	24	55
3 b	4-CIPh	CH ₃	65	20
3 c	C ₄ H ₉	Н	79	0

Calculated after purification by chromatographic column

Identification	of acids
3a	FTIR spectra [v cm ⁻¹ 3427 (OH); 1728 (CO)] mass spectrum [m/z (%) 132(1); 122(8); 121(86); 105(11); 91(2); 77(16); 63(2); 51(13); 43(100)] m.p. 86-88 �C
3b	FTIR spectra [v cm ⁻¹ 3410 (OH); 1732 (CO); 655 (CCI)] mass spectrum [m/z (%) 156 (9); 154 (26); 141 (33); 139 (100); 113 (16); 111(48); 75 (17)] ¹ H-NMR [δ : 1.64 (s, 3H); 7.39 (d, <i>J</i> = 7.9 Hz, 2H); 7.57 (d, <i>J</i> = 7.9 Hz, 2H)]
121 05	¹³ C-NMR [δ : 27.34 (q); 74.62 (s); 127.58 (d); 127.87 (d);
131.00	(s); 143.42 (s); 176.58 (s)] m.p. 127-128 �C
3с	FTIR spectra [v cm ⁻¹ 3412 (OH); 2959-2858 (CH); 1722 (CO)] mass spectrum [m/z (%) 87 (47); 69 (100); 57 (14); 43 (26); 41 (50)] m.p. 60-61 �C

Under said homogeneous conditions, the oxidation of diol **1a** led to (\diamondsuit) atrolactic acid **3a** in 24% yield and 55% of ketone due to the cleavage of benzylic moiety; while when the p-Cl derivative was used as substrate the acid/ketone ratio changed in favour of the acid compound (65:20 in percent terms). In case of aliphatic 1,2-hexanediol only the corresponding acid was found in good yield of 79%.

Since the homogeneous TEMPO/bleach reaction protocol applied to the conversion of diols 1a,b yields the moderate selectivity reported above, we used our heterogeneous sol-gel entrapped TEMPO catalyst ⁵ to improve the selectivity. Again, the heterogenous reaction of diol 1a gave an inversion of the selectivity and now an acid/ketone of 60:40 was observed. We ascribed this change in selectivity to the separation of the catalyst from the reactants.

REFERENCES and NOTES

1. a) K. C. Nicolau, W. M. Dai, R. K. Kuy, *Angew. Chem. Int. Ed. Engl.* **1994**, *33*, 15; b) H. Humezawa, T. Aoyagi, H. Suda, M. Hamada, T. Takeucii, J. Antibiot. **1976**, *29*, 97; c) S. Shinagawa, T. Kanamaru, S. Harada, M. Asai, H. Ookazaki, J. Med. Chem. **1987**, *30*, 1458.

2. M.L. Testa, C. Hajji, E. Zaballos-Garcia, M. Ciclosi, J. Sep Veda-Arques, R. Ciriminna, M. Pagliaro Adv. Synth. Catal., 2004, 6, 655.

3. T. K. M. Shing, E. K. W.Tam, V.W.F. Tai, I.H.F. Chung, Q. Jiang Chem. Eur. J. 1996, 2, 50

4. a) F. J. Aladro, F. M. Guerra, F. J. Moreno-Dorado, J. M. Bustamante, Z. D. Jorge, G. M. Massanet *Tetrahedron Lett* **2000**, *41*, 3209; b) P. M. Wovkulich, K. Shankaran, J. Kiegiel, R. Uskokovic J. Org. Chem. **1993**, *58*, 832; c) N. J Davis, S.L. Flitsch *Tetrahedron Lett* **1993**, *34*, 1181.

5. R. Ciriminna, C. Bolm, T. Fey, M. Pagliaro Adv. Synth. Catal., 2002, 344, 159