IECBS 2024 Conference

The 4th International Electronic Conference on Brain Sciences

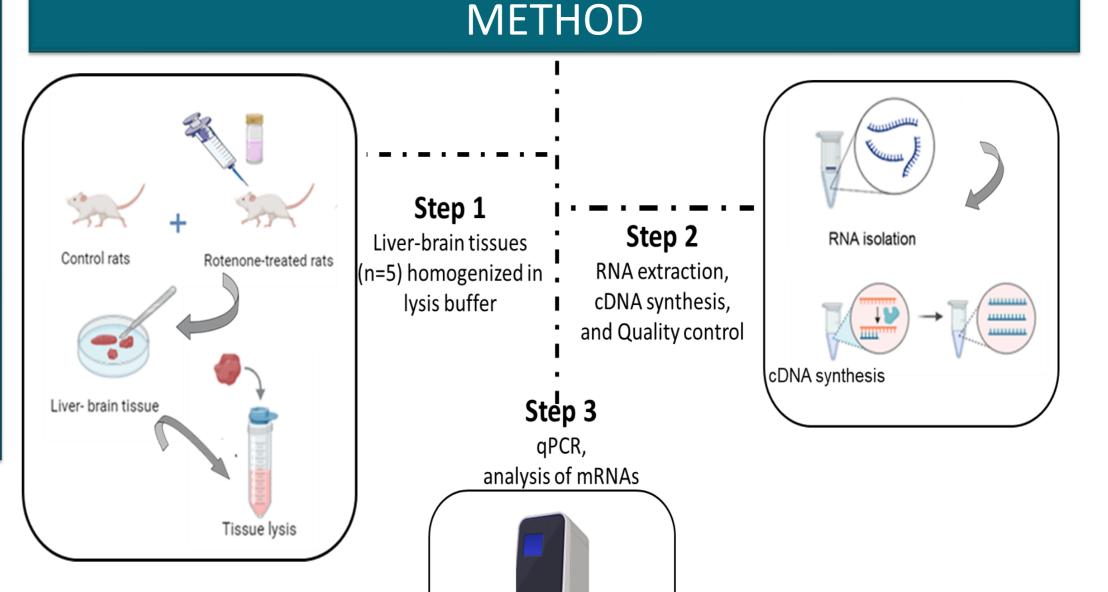
23-25 October 2024 | Online

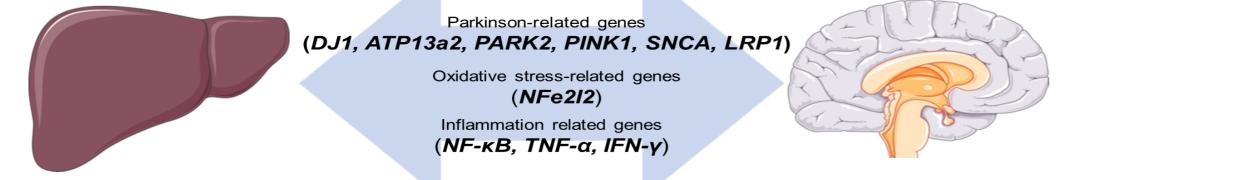
The role of the liver-brain axis in a rotenone-induced rat model of Parkinson's disease

Tuba Oz*1, Juan Fraile-Ramos^{2, 3}, Radosław Kujawski⁴, Olga Wojciechowska¹, Przemysław Łukasz Mikołajczak⁴, Lydia Giménez-Llort^{2, 3}, Małgorzata Kujawska¹

¹ Department of Toxicology, Poznan University of Medical Sciences, Poznań, Poland

² Institut of Neuroscience, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Barcelona, Spain


³ Department of Psychiatry and Forensic Medicine, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Barcelona, Spain


⁴ Department of Pharmacology, Poznan University of Medical Sciences Poznań, Poland *Corresponding author's email: *tubalok60@gmail.com* **UAB** Universitat Autònoma de Barcelona

INTRODUCTION & AIM

- Evidence indicates the importance of the liver-brain axis with the critical role of the liver in the neurodegeneration process.^{1,2}
- Alpha-synuclein (α-syn) aggregation is the hallmark pathological lesion in the brains of patients with Parkinson's disease (PD). A recent study demonstrated that α-syn pathology also accumulates within the liver, the main organ responsible for substance clearance and detoxification.³
- Besides the proteostasis alterations oxidative stress, and neuroinflammation are believed to be involved in the pathology.
- In this study, we evaluated the basic levels of expression of genes in the brain and liver to reveal
 potential targets involved in the communication of both organs in rotenone-treated rats, a rodent
 model of PD⁴, and as compared to control rats.
- Specifically the expression of genes related to α -syn production (**SNCA, LRP1**)^{5,6} other PDrelated genes (**DJ1, Atp13a2, PARK2, PINK1**)⁶, oxidative stress (**NFe2I2**)⁷, and inflammation (**NF-\kappaB, INF-\gamma,** and **TNF-\alpha**)⁸ was assessed.

RESULTS & DISCUSSION

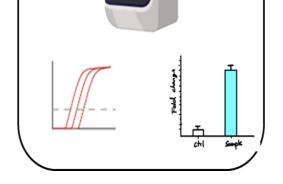


Figure 1. PD-related genes and genes related to oxidative stress and inflammation showing the importance of the liver-brain axis in the development and prognosis of PD

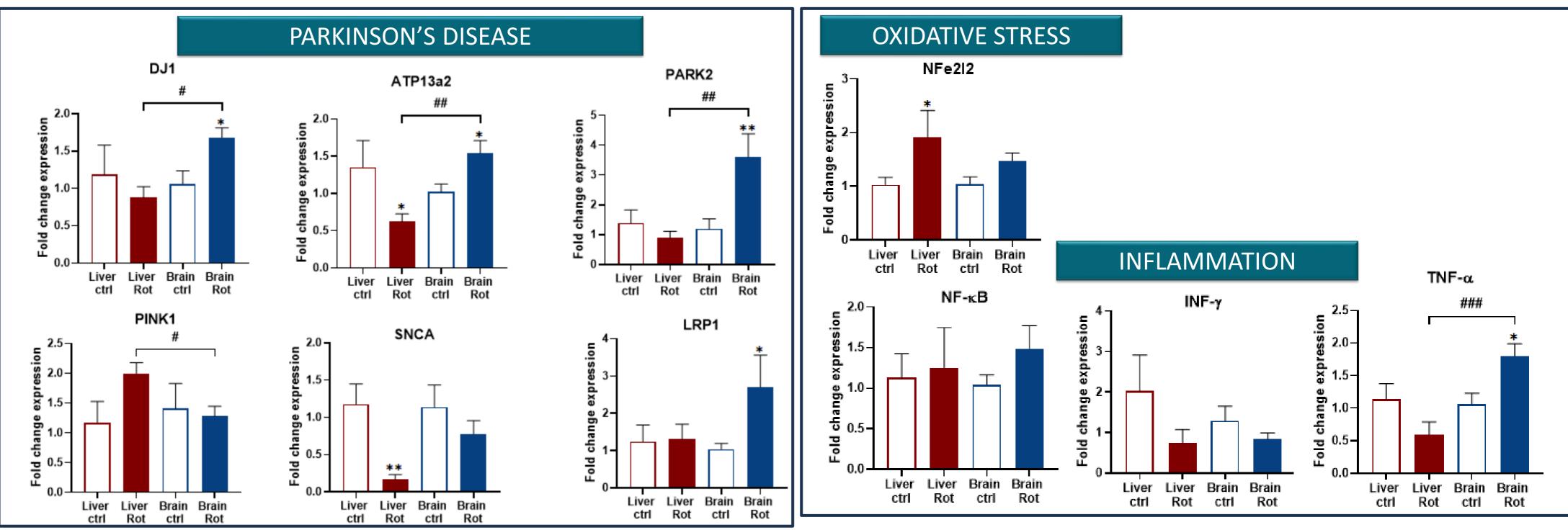


Figure 2. mRNA levels of *DJ1, ATP13a2, PARK2, PINK1, SNCA, LRP1, NFe212, NF-\kappaB, INF-\gamma* and *TNF-\alpha* in the brain and liver of control (ctrl) and rotenone (Rot) treatment groups. Expression levels were normalized to reference genes (Access number: NM_0311442 and NM_020071.2) and the relative expression levels of their mRNAs were determined using the (2^{- $\Delta\Delta$ ct}) method. Data are expressed as mean ± SEM (n = 5) and analyzed by Unpaired t-test and two-way ANOVA with uncorrected Fisher's LSD test. *P < 0.05, **P < 0.01 vs. control rats # p < 0.05, ## p < 0.005 ### p < 0.001 vs. liver Rot or brain Rot.

Rot treated rats vs. controls show:

- Hepatic down-regulation PD-related genes ATP13a2 and SNCA
- Hepatic up-regulation of Oxidative stress-related gene NFe212

SUMMARY OF RESULTS

- Brain up-regulation of PD-related genes DJ1, ATP13a2, LRP1 and PARK2, and inflammatory gene TNF-α
- Significant changes in the expression of PD-related genes DJ1, ATP13a2, PARK2 and PINK1, and inflammatory gene TNF-α between the liver and the brain were only observed in Rot-treated rats

CONCLUSION

 The study suggests that changes in the liver may be involved in pathological conditions linked to PD and supports research on peripheral markers related to the liver-brain axis in this disease.

REFERENCES

- 1. Vegas-Suárez et al., (2022) DOI:10.3389/fphys.2022.864263
- 2. Fraile-Ramos et al., (2023) DOI:10.3390/cells12111517
- **3.** Reyes et al., (2021) DOI:10.1186/s40478-021-01136-3
- 4. Cannon et al., (2009) DOI:10.1016/j.nbd.2009.01.016
- 5. Chen et al., (2021) DOI: 10.1186/s13024-022-00560-w
- 6. Ke et al., (2021) DOI: 10.14336/AD.2020.0331
- 7. Monir et al., (2021) DOI:10.1186/s12993-020-00171-9
- 8. Akinmoladun et al., (2022) DOI:10.1002/jbt.23022

PERSPECTIVES

- The liver-brain axis alterations observed in the rotenone-induced rat model of PD in our study can open new paths to understanding the systemic aspects of PD.
- Further research is underway to determine whether liver-brain axis alterations could correlate with a worse disease prognosis and to establish potential integrative system targets for PD treatment.

ACKNOWLEDGEMENTS

- This research was funded by Narodowe Centrum Nauki, grant number 2017/26/D/NZ7/00748.
- Also, research was funded by Erasmus+ Practiques de la Unió Europea, the title of the proposal was 'Targeted biochemical and molecular analysis of rats treated with Rotenone'.

https://sciforum.net/event/IECBS2024

sciforum-101763