

The 5th International Electronic **Conference on Foods**

28-30 October 2024 | Online

INFLUENCE OF FERMENTATION PATTERN ON AROMA COMPOUNDS IN LEGUME SPREADS

Valerija Illarionova¹, Jelena Zagorska^{1*}, Lolita Tomsone¹, Inga Ciprovica¹, Jana Feldmane²

Faculty of Agriculture and Food Technology, Latvia University of Life Sciences and Technologies, Rigas 22a street, Jelgava, Latvia

*jelena.zagorska@lbtu.

INTRODUCTION & AIM

While fermentation is recognized for its ability to enhance the functional, nutritional, and sensory aspects of legumes, the outcomes of various studies differ and lack consistency due to factors such as protein source, microorganisms, and applied fermentation methods. The aim of this study was to compare the profile of aroma compounds in spreads produced from different legume concentrates using different fermentation temperatures.

MATERIALS AND METHODS

The legume concentrates (LC) (local market, Latvia) of brown pea (AB), yellow pea (AY), and fava (AF) in 50:50 proportions with Alomix (legume concentrate mix), starter Danisco® VEGE 033 (Danisco, Denmark), were used in the research. PC was thermally treated (72±1°C, 30±5 min), cooled (37°C, 40°C, 43°C), inoculated, and fermented (until pH 4.9-4.6 was). Aroma compounds were detected in fermented spreads using Perkin Elmer Clarus 500 GC/MS and an Elite-Wax ETR column (60 m \times 0.25 mm i.d.; DF – 0.25 μ m).

formulation

pasteurization

RESULTS & DISCUSSION

Table 1. Chemical composition of the legume
 spreads

Fig. 1. The technology of the legume spread production

Flavour			RetentionVolatileContent, %						e Content g, 100 g ⁻¹					
			_	_			compounds	time (min)	ash	fiber			spread	
		ne spread before Legume spread steurization pasteurizati						1.83 ± 0.073 ^a	1.64 ± 0.019 ^a	1.41 ± 0.03 ^a	8.83 ± 0.09 ^b	AY		
)	AF/70	AB/70	AY/70	FB	BP	YP	-		1.84 ±	1.66 ±	1.37 ±	9.10 ±	AB	
grassy, hay like, pea po	67.00	73.84	90.95	71.77	78.31	83.64	hexanal CAS NR.	13:83	0.069 ^a 1.77 ± 0.083 ^a	0.018 ^a 1.70 ± 0.036 ^a	0.031 ^a 1.34 ± 0.035 ^a	0.21 ^a 9.56 ± 0.36 ^a	AF	
lemon, grass green.	33.00	26.16	9.05	28.23	21.69	16.36	66-25-1 1-hexanol CAS NR. 111-27-3	21.57	Table 3. Volatile compounds in the fermented legume					
Flavour	F	Content, % E033 AB VEGE033 C AF VEGE033						spreads ention Volatile compounds e (min) AY VEGE						

Netention	Content, 70									Γιάνουι	
time (min)		AY VEGE033			AB VEGE033			AF VEGE033			
		37°C	40°C	43°C	37°C	40°C	43°C	37°C	40°C	43°C	
6:04	acetone CAS NR. 67-64-1						8.42	23.93	28.46	41.68	pungent, sweet
10:46	2,3 butenediol CAS NR. 431-03-8							20.31			buttery, creamy
13:83	hexanal CAS NR. 66-25-1	43.06	63.68	51.57	59.16	43.36	4.77	11.14	19.42	19.32	grassy, hay-like, pea pod
17:21	β-terpinyl acetate cyclohexanol1- metil-4-(1-metiletil)-, acetate	-	-	-	-	-	33.88	-	-	-	herbs, pine
18.39	furan, 2-pentil CAS NR. 110-00-9	-	6.41	1	-	-	-	-	-	-	fruity, sweet
21:58	1-hexanol CAS NR. 111-27-3	56.94	9.46	41.04	40.84 🤻	28.26	8.50	44.62 🇳	31.78	29.89	lemon, grass, green
23:65	2-octenal CAS NR. 2363-89-5	-	7.86	-	-	-	-	-	-	-	fatty acids, citrus fruits
23:84	1-octen-3-ol CAS NR. 3391-86-4	-	5.06	-	-	-	-	-	-	-	mushrooms, soil
24:07	acetic acid CAS NR. 64-19-7	-	-	7.25	-	12.24	6.71	-	10.34	9.12	sour, vinegary
25:99	benzaldehyde CAS NR. 100-52-7	-	7.43	-	-	-	-	-	-	-	almond, sweet
27:76	butanoic acid CAS NR.107-92-6	-	-	-	-	-	30.99	-	-	-	rancid, cheesy
34:66	triacetin CAS NR. 102-76-1	-	-	-		16.14	6.72	-		-	slightly sweet smell

Aldehydes, alcohols, organic acids, and ketones have the highest relative abundance in the analysed samples. A significantly lower (p<0.05) hexanal concentration was detected in AF samples, regardless of the fermentation temperature, in AY samples at 37±1°C, and in AB samples at 43±1°C.

CONCLUSION

Fermentation temperature has significant influence on aroma compounds in fermented legume spreads; however, the results are not consistent and depend on the LC. The choice of LC and an appropriate fermentation temperature can positively affect the aroma of the product. The choice of LC and appropriate fermentation temperature can positively affect the taste, aroma of the final product. The fermentation temperature for AY and AF sample 37 °C, for AB 43°C was established as the most appropriate, which reduces the pea aroma in analyzed samples.

Acknowledgement. Project Nr. 22-00-A01612-000016 "Potential for the application of pulses for alternatives dairy products" supported by Ministry of Agriculture and Rural Support Service of the Republic of Latvia.