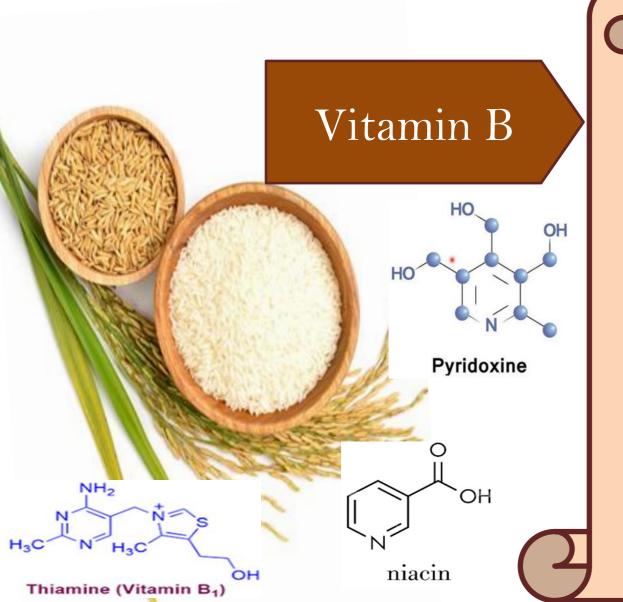
Foods Conference

The 5th International Electronic Conference on Foods

28-30 October 2024 | Online


Vitamin B contents of widely cultivating new-improved rice (Oryza sativa L.) varieties of Sri Lanka

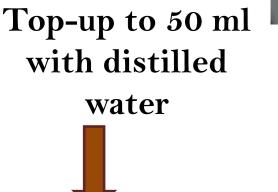
M.D.W. Samaranayake^{1*}, W.K.S.M. Abeysekera², K.R.R. Mahanama³, I.G.N. Hewajulige¹, H.P.P.S. Somasiri¹, D. M. J. B. Senanayake⁴ & G.A.S. Premakumara⁵

¹Modern Research and Development Complex (MRDC), Industrial Technology Institute (ITI), Sri Lanka, ²Department of Agricultural Technology, Faculty of Technology, University of Colombo, Techno City, Sri Lanka, ³Department of Chemistry, University of Colombo, Sri Lanka, ⁴Rice Research and Development Institute, Batalagoda, Sri Lanka, ⁵Department of Basic Science & Social Science, Faculty of Nursing, University of Colombo, Sri Lanka

INTRODUCTION & AIM

- Rice is the dietary staple in Sri Lanka
- The annual per capita consumption is nearly 107 kg
- More than 90% of rice cultivation in Sri Lanka accounts new -improved rice varieties (NIRVs)

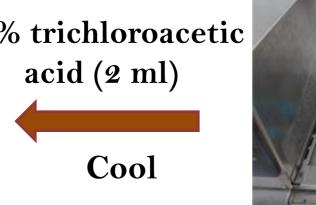
Benefits


- > Healthy function of brain & nervous system
- > Helps the body to convert nutrients into energy
- > Promotes heart health
- > Healthy hair, skin & nails
- > Helps to form & repair our genetic materials
- > Helps for proper blood function

This study evaluated vitamin B contents of 16 widely cultivating NIRVs in Sri Lanka

METHOD

MATERIALS: Locally grown 16 new-improved rice varieties (namely Bg 300, Bg 352, Bg 358, Bg 360, Bg 366, Bg 379-2, Bg 403, Bg 450, Bg 94-1, Bw 272-6b, Bw 367, At 307, At 308, At 309, At 311 and At 362) obtained from Rice Research and Development Institute (RRDI), Batalagoda, Sri Lanka



Centrifuge

(3500 rpm, 30 min)

Adjust final

pH to 3

Boiled in water bath (100 °C, 30 min)

Filter $(0.45 \mu m \text{ nylon})$

Analyzed by HPLC-DAD B1 & B3: 266 nm **B2** : 275 nm

B5, B6, B7, B9 & B12: 270 nm

B1 & B	3 at 266nm	nU [B ₅ , B ₆ , B ₇ , B ₉ & B ₁₂ at 210nm		eau 1	B ₂ at 275 nm	24
		500	at a	E chi	20		- Estate
	~ .9	400	Fig.		80		
	Fig. 19	300		Sept. Sept.	100		
	Set ale	200 -			75		
		100 -		1 11	8	M	
		 <u></u>		4-14L/VI	1		

266nm, 270 nm & 275 nm

Table 1. Variation of vitamin B (B₁, B₂, B₃, B₅, B₆, B₇, B₉ & B₁₂) contents of selected new improved rice varieties of Sri Lanka.

Rice	Pericarp	Vitamin B content (μg/g)								
variety	colour	B_1	B_2	B_3	B_{5}	B_{6}	B_7	B_{9}	B ₁₂	
At 311	Red (31.9 ^a	2.9^{b}	$25.8^{\rm f}$	13.0 ^f	$7.4^{ m efg}$	$11.7^{ m ef}$	1.8^{b}	ND	
Bg 403	White	24.1 ^b	$1.5^{ m defg}$	35.1 ^e	18.6 ^f	$9.9^{ m bcd}$	8.8^{fgh}	ND	ND	
Bg 94-1	White	24.0^{b}	$1.5^{ m defg}$	26.9 ^f	11.1 ^f	$8.3^{ m cdef}$	$3.7^{ m gh}$	0.7^{de}	ND	
At 308	White	$21.3^{\rm b}$	2.9^{b}	48.7^{d}	$30.2^{\rm e}$	$8.0^{ m defg}$	$21.4^{ m cd}$	$0.8^{\rm cd}$	ND	
Bg 358	White	14.1 ^c	1.9^{cdef}	37.2 ^e	32.6^{e}	12.0 ^{ab}	24.3°	ND	ND	
Bg 300	White	13.1 ^{cd}	4.3ª	82.0 ^a	56.4 ^c	13.6ª (72.5 ^a	3.1 ^a	ND	
At 362	Red	12.5^{cd}	2.8^{bc}	23.1^{fg}	$17.5^{\rm f}$	6.2 ^{fg}	2.6^{h}	1.5^{bc}	ND	
At 309	White	12.2^{cd}	0.7^{g}	25.4^{f}	13.0 ^f	$9.4^{ m cde}$	10.1 ^{fg}	0.5^{de}	ND	
Bw 272-6b	Red	11.9 ^{cde}	1.7^{def}	71.2 ^b	82.5a	12.4 ^{ab}	50.5 ^b	3.2^{a}	ND	
Bg 450	White	9.9^{cdef}	1.4 ^{defg} (83.5^{a}	16.4 ^f	$7.2^{ m efg}$	18.8 ^{cde}	0.9 ^{cd}	ND	
Bw 367	White	9.2^{def}	$1.3^{ m efg}$	20.8 ^{fg}	38.1 ^{de}	10.5 ^{bc}	$23.7^{\rm c}$	ND	ND	
Bg 352	White	7.6^{efg}	2.3 ^{bcd} (83.5 ^a	66.1 ^b	12.1 ^{ab}	57.5 ^b	2.8ª	ND	
Bg 379-2	White	$7.5^{ m efg}$	$2.0^{ m bcde}$	23.2^{fg}	11.6 ^f	$9.1^{ m cde}$	1.6 ^h	ND	ND	
At 307	White	6.3 ^{fg}	1.8 ^{def}	41.8 ^{de}	$30.0^{\rm e}$	$5.7^{ m g}$	$25.2^{\rm c}$	ND	ND	
Bg 366	White	6.1 ^{fg}	1.0 ^{fg}	18.2 ^g	$29.6^{\rm e}$	$8.4^{ m cdef}$	15.9^{def}	ND	ND	
Bg 360	White	4.3 ^g	2.1 ^{bcde}	56.7°	46.7 ^d	13.8ª	$23.5^{\rm c}$	ND	ND	

Results expressed as mean value of triplicate analysis on dry weight basis of whole grain rice. Mean values in a column superscripted by different letters are significantly different at P < 0.05; ND: Not Detected

Studied rice varieties contained more of vitamins B₁, B₃, B₅ and **B**₇ among the B-complex.

CONCLUSION

The studied NIRVs of Sri Lanka comprised more of vitamin B_1 , B_3 , B_5 and B_7 and the contents varied among the studied rice varieties

FUTURE WORK / REFERENCES

- 1. Sumczynski, D., Koubová, E., Sneyd, J., Erb-Weber, S. and Orsavová, J., 2018. Preparation of non-traditional Dickkopf and Richard wheat flakes: Phenolic and vitamin profiles and antioxidant activity. LWT- Food Science & Technology, 90, 31-37.
- 2. Çatak, J., 2019. Determination of niacin profiles in some animal and plant based foods by high performance liquid chromatography: association with healthy nutrition. Journal of animal science and technology, 61(3), p.138
- 3. Ghosh, S., Datta, K. and Datta, S.K., 2019. Rice vitamins. In Rice (pp. 195-220). AACC **International Press.**