

The 5th International Electronic Conference on Foods

MDPI

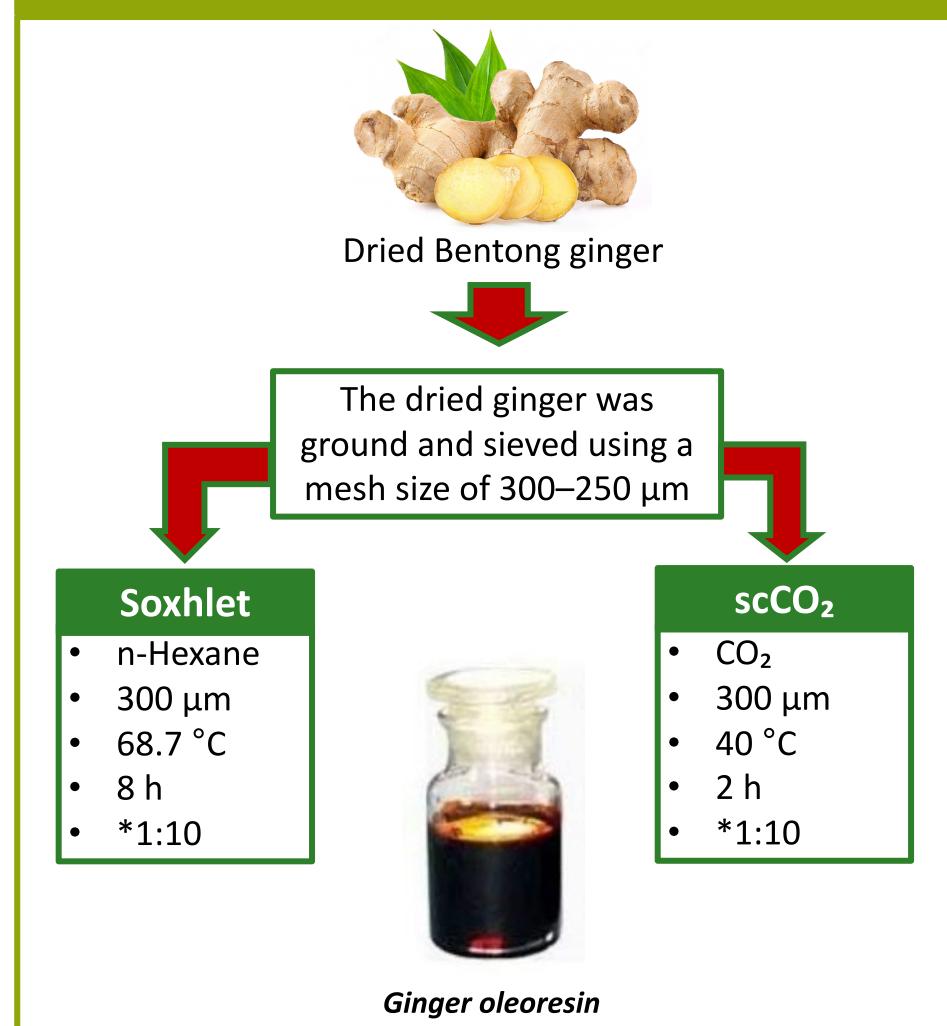
28-30 October 2024 | Online

An alternative to the conventional extraction method for the recovery of bioactive compounds from Bentong ginger

Muhamad Syafiq Hakimi Kamaruddin, Norhidayah Suleiman Faculty of Food Science and Technology, Universiti Putra Malaysia

INTRODUCTION

Supercritical carbon dioxide (scCO₂) extraction is an efficient and eco-friendly method for obtaining bioactive compounds from ginger (Zingiber officinale). This process selectively extracts high-quality compounds without solvent residues and operates at lower temperatures, preserving gingerol from thermal degradation. As a result, scCO₂ extraction maintains gingerol's antioxidant and anti-inflammatory properties, making it a superior alternative for food applications compared to conventional methods.


OBJECTIVE

To compare the yield and recovery of bioactive compounds from Bentong ginger (Zingiber officinale Roscoe var.

FINDINGS				
	scCO ₂	Soxhlet	p-value	

bentong) using Soxhlet extraction and scCO₂ extraction

METHODOLOGY

Yield extract (%)	2.56 ± 0.07	4.76 ± 0.08	0.001
6-gingerol (mg/g)	171.26 ± 0.52	131.77 ± 0.20	0.038
TPC (GAE mg/g)	17.84 ± 0.43	15.08 ± 1.16	0.007
TFC (QE mg/g)	74.46 ± 1.72	72.67 ± 0.33	0.034
RSA (%)	91.14 ± 0.06	85.64 ± 0.009	0.046

- Yield of Extract (%): scCO₂ yielded 2.56 ± 0.07%, significantly lower than 4.76 ± 0.08% from Soxhlet (p = 0.001), suggesting Soxhlet may extract more compounds.
- 6-gingerol Content (mg/g): scCO₂ had 171.26 ± 0.52 mg/g, compared to 131.77 ± 0.20 mg/g for Soxhlet (p = 0.038), indicating scCO2 retains higher 6-gingerol concentration.
- TPC (GAE mg/g): TPC was 17.84 ± 0.43 GAE mg/g for scCO₂
 vs. 15.08 ± 1.16 GAE mg/g for Soxhlet (p = 0.007), showing scCO2's superior extraction of phenolics.
- TFC (QE mg/g): TFC was 74.46 ± 1.72 QE mg/g for scCO₂ and 72.67 ± 0.33 QE mg/g for Soxhlet (p = 0.034), favoring scCO2 for flavonoid extraction.
- RSA: RSA was 91.14 ± 0.06% for scCO₂ compared to 85.64 ± 0.009% for Soxhlet (p = 0.046), indicating better antioxidant activity in scCO₂ extracts.

- Extract yield
- 6-gingerol
- Total phenolic content
- Total flavonoid content
- Radical scavenging activity

*sample to solvent ratio

OBJECTIVE

scCO₂ extraction is more effective in yielding higher quantities of bioactive compounds, particularly 6-gingerol, phenolics, and flavonoids, and demonstrates superior antioxidant activity compared to Soxhlet extraction, enhancing its potential for use in food technology applications.

FUTURE WORK / REFERENCES

- 1. Kamaruddin, M. S. H., Chong, G. H., Umanan, F., & Suleiman, N. (2023). Enhancement of 6-gingerol extraction from Bentong ginger using supercritical carbon dioxide. Journal of CO2 Utilization, 72(March), 102505.
- Kamaruddin, M. S. H., Chong, G. H., Daud, N. M., Putra, N. R., Salleh, L. M., & Suleiman, N. (2023). Bioactivities and green advanced extraction technologies of ginger oleoresin extracts : A review. Food Research International, 164(August 2022), 112283.

https://sciforum.net/event/Foods2024