

Quantitative and qualitative evaluation of microplastic contamination of shrimp using Vis-NIR multispectral imaging technology combined with a modified selforganizing map

> Sureerat Makmuang, Abderrahmane Aït-Kaddour* Université Clermont Auvergne, INRAE, VetAgroSup, UMRF, 63370, Lempdes, France Email: smakmuang@gmail.com

> > Presented by Dr.Sureerat Makmuang

Microplastic (MPs) in the seafood can have several negative effects

Disruption of Marine Ecosystems

MPs can cause harm to various species through ingestion, altered feeding and reproductive behaviors, leading to declines in biodiversity and the overall health of marine environments.

Chemical Contamination

MPs can adsorb and concentrate toxic chemicals from the surrounding environment. This bioaccumulation of toxins poses risks to both wildlife and humans.

Human Health Concerns:

It is possible that MPs could carry harmful chemicals into human body, although the extent of these health risks is not yet fully understood.

Economic Costs

MPs in seafood can impact the fishing industries, leading to decreased consumer confidence and economic losses.

Why PET, PE, PP and PS

Prevalence

They are widely used in consumer products. PE and PP are the most widely used worldwide.

Environmental Persistence

PET, PE, PP, and PS are known for their durability and resistance to degradation

Toxicity Concerns

They can absorb harmful pollutants from the environment, posing risks to marine life.

Analytical Techniques •

Their detection is well-supported by existing analytical methods, such as spectroscopy and imaging techniques

Why Shrimp

Ecological Importance

Shrimps are a key food source. Studying MP in shrimp helps assess marine food chains

Bioaccumulation Potential

Shrimps can accumulate MPs in their bodies, which may transfer to food chain

Human Consumption

Shrimps are widely consumed, making it essential to evaluate their safety

Research Gap

There is a need for more studies on MP contamination in seafood, to fill knowledge gaps and support future monitoring.

VetAgro SupAuvergne

Note: PET (Polyethylene Terephthalate), PE (Polyethylene), PP (Polypropylene), and PS (Polystyrene) Ref: [1] Unuofin, J.O. et al., 2023.. *Journal of Sea Research*, *194*, p.102410

01

INTRODUCTION Background of MP detection in seafood, as well as the study's objective

	a 1

EXPERIMENTAL

02

Sample collection and MSI acquisition. Modified supervised SOMs and its application in qualitative and quantitative analysis

03 RESULTS AND DISCUSSION

Results and discussion of modified SOMs and comparison with PCA

04 CONCLUSION

Conclusion and future perspectives to improve this work

 \mathbf{O}

Visible-Near Infrared Multispectral Imaging (Vis-NIR MSI) technology

It captures image data across specific wavelength ranges and is widely used for MP detection because it captures spatial and spectral data and provides fast and non-destructive measurements.

VetAgro SupAuvergne

Université Clermont Auvergne

Clermont INRAE, VetAgroSup, France

Chemometrics

Mathematical and statistical techniques to extract meaningful information from complex chemical data

□ INTRODUCTION

" Self-organizing map (SOMs)

SOMs is an unsupervised machine learning technique used to provide a topology-preserving mapping from the high dimensional space to map units.

- Dimension reduction method
- No need to determine the number of latent variables
- Linearity and nonlinearity of the underlying information are not affected by SOMs calculation

VetAgro Sup VetAgro Sup Auvergne

To classify and predict MPs (PET, PE, PP, and PS) contamination in minced shrimp

EXPERIMENTAL

Modified supervised selforganizing map (SOM)

A modified SOM algorithm is used to classify unknown microplastics (MPs) by adjusting key parameters such as map size, scaling values, and the number of iterations. This is then applied to multispectral imaging (MSI) to classify MPs and compared to other conventional chemometric methods

Sample collection & MSI acquisition

Different varieties of microplastic in range size 1-4 mm contaminated in minced shrimp were scanned in reflectance mode in the wavelength range of 435-970 nm using multispectral imaging

In qualitative, the results allow visual identification. In quantitative, MPs were contaminated with minced shrimp at concentrations from 0.04% to 1% w/w.

Application in qualitative and quantitative

EXPERIMENTAL

VetAgro SupAuvergne

MOPC

Note: X_s : Sample vectors W_k : Weight vector of each unit (w_k) on the initial SOM map d_{ks} : Euclidean distance e between x_s and w_k for each map unit k

Note: Preprocessing is Savitzky-Golay smoothing, standard normal variate (SNV) Best map unit (BMU)

Ref: [1] Makmuang, S., et al., 2023. *Microchemical Journal*, 190, p.108599. [2] Makmuang, S., et al. *Computers and Electronics in Agriculture*, 191, p.106522. 10

RESULT AND DISCUSSION

RESULT AND DISCUSSION

Qualitative analysis

Figure shows four types of MPs (PET, PE, PP, PS) on a shrimp shell: (A1) digital image, (A2) PCA contour plot of PC1, and (A3) superimposed BMU color map from the global SOM. The corresponding images are also shown, with (B1) digital image, (B2) PCA contour plot, and (B3) superimposed BMU color map which the colors blue, red, green, magenta, yellow, and white represent PET, PE, PP, PS, shrimp shell (A3), minced shrimp (B3), and background, respectively.

In qualitative analysis, the SOM results offer clearer visual identification and distinction of the four types of microplastics (PET, PE, PP, and PS) compared to PCA, giving better insights into the types and distribution of MPs within the samples

Note: BMU is Best Map Unit PCA is Principal Component Analysis **12**

RESULT AND DISCUSSION

Quantitative analysis

Actual conc.	Predicted conc.
(%w/w PE)	(%w/w PE)
0.04	0.05
0.08	0.1
0.12	0.15
0.16	0.18
0.2	0.22
0.4	0.44
0.6	0.65
0.8	0.86
1	1.07

Actual conc.	Predict conc.
(%w/w PP)	(%w/w PP)
0.04	0.08
0.08	0.12
0.12	0.15
0.16	0.22
0.2	0.23
0.4	0.47
0.6	0.68
0.8	0.87
1	1.12

Fig. 3 presents the R^2 plots for predicting MPs on minced shrimp using modified SOMs: (A) PE, (B) PP. The inset table shows the percentage of actual versus predicted MPs concentrations on minced shrimp, ranging from a limit of quantification (LOQ) of 0.04% to 1% w/w.

In quantitative analysis, the results show that modified SOMs achieved a high R² over 0.99, suggesting a strong correlation between the predicted and actual concentrations, indicating that the model can accurately predict concentrations of MPs in shrimp samples

RESULT AND DISCUSSION Size analysis

		(A) Digital image	(B) PCA (PC1) contour plot	(C)Superimposed BMU color from SOM	PET	Blue pixel	Red pixel	Greer	n Mager a pixe	nt %Proportion
	4 mm 🕳			100		3453	0	0	399	89.64
	3 mm -			300		1999	0	0	0	100
Ъ	2 mm •			400		869	0	0	0	100
				600 - 700 -		269	0	0	48	84.85
				800 100 200 300 400 500 600 700	PE	Blue pixel	Red pixel	Green I pixel	Magent a pixel	%Proportion of red pixels
	4 mm 🕳			100		31	3113	0	69	96.89
ЭE	3 mm 🗕			300		1	2227	0	73	96.78
	2 mm -			500		24	1013	0	37	94.32
			- AND AREAS			129	129	0	12	47.78
					PP	Blue pixel	Red (pixel	Green M pixel	lagenta pixel	%Proportion of green pixels
	4 mm 🔶					198	10	3360	340	85.98
ЪР	3 mm •					141	0	1411	228	79.27
	2 mm ●					94	1	780	167	74.86
		C T C T C C C C C C C C C C C C C C C C				221	0	110	84	26.51
					PS	Blue	Red	Green I	Magenta pixel	%Proportion of magenta pixels
10	4 mm 🔶			100		267	0	0	2807	91.31
р С	3 mm ← 2 mm ←			300		193	0	0	1707	89.84
	1 mm 🔸			500	-	127	0	0	783	86.04
						157	0	0	153	49.35

"

□ If any piece has a relevant pixel proportion greater than 25%, it will be classified in its respective class

- □ E.g. PET, all four PET pieces have a blue pixel proportion exceeding 84%, indicating that all are classified as PET.
- This suggests that SOMs is effective in classifying MP particles as small as 1 mm and perform better than PCA

"

Figure illustrates the size-independent analysis of MPs ranging from 1-4 mm for the four types on the shrimp shell: (A) digital image, (B) PCA contour plot of PC1, and (C) superimposed BMU color map from the global SOM. In these maps, the colors blue, red, green, magenta, yellow, and white represent PET, PE, PP, PS, shrimp shell, and background, respectively. The inset table show the number of RGB pixel count from superimposed BMU color map.

The modified SOMs can effectively identify MP contamination in shrimp, both qualitative and quantitative assessments within a contamination range of 0.04-1% w/w, and R² >0.99. However, the prediction performance depends on the type of MPs.

Future research could focus on determining the limit of detection (LOD) for MP contamination and extend studies to various seafood types and MP varieties to enhance food safety and protect consumer health

Supervisor: Prof.Abderrahmane Aït-Kaddour

Email: abderrahmane.aitkaddour@vetagro-sup.fr Affiliations: Université Clermont Auvergne, INRAE, VetAgroSup, UMRF, 63370, Lempdes, France

MOPGA (Make Our Planet Great Again)

Postdoctoral fellowship from the French Ministry for Europe and Foreign Affairs

VetAgro Sup
Campus Agronomique de Clermont

Reference **Prediction** Number of % 0.04 %w/w PS pixels w/w 0.04 Ref 0.05 Predict 450 -Number of % 0.08 %w/w PS pixels w/w 0.08 Ref Predict 0.10 Number of % 0.12 %w/w PS pixels w/w 0.12 Ref 0.15 Predict

Generation of unsupervised SOM map

where X_s : Sample vectors

 $\tilde{W_k}$. Weight vector of each unit (w_k) on the initial SOM map

 d_{ks} : Euclidean distance e between x_s and w_k for each map unit k

Generation of unsupervised SOMs

where X_s :

 X_s : Sample vectors W_k : Weight vector of each unit (w_k) on the initial SOM map

 d_{ks} : Euclidean distance e between x_s and w_k for each map unit k

Determination of unsupervised SOM

 Weedy rice
 Cultivated rice

 10,000 iterations
 Image: Cultivated rice

Similar samples are assigned into similar regions in the map

Determination of supervised SOM

Determination of an unknown

Scaling value (ω) is impact factor for SOM performance

"

CALC RESULTS AND DISCUSSIONS

CALC RESULTS AND DISCUSSIONS

