

The 5th International Electronic **Conference on Foods**

28-30 October 2024 | Online

FAKULTI SAINS DAN TEKNOLOGI MAKANA

PREVALENCE AND ANTIBIOTIC RESISTANCE PROFILE OF Vibrio vulnificus IN WHITELEG SHRIMP (Litopenaeus vannamei)

Noor Azira Abdul Mutalib^{1,2}, Nor Adeline Sheena Faizal¹, Epeng Lee²

¹Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia ²Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia

INTRODUCTION & AIM

Shrimp aquaculture in Malaysia has expanded to meet the increasing demand for food commodities, mainly focusing on whiteleg shrimp (Litopenaeus vannamei).

The shift towards intensive farming systems has been adopted to enhance productivity. However, these high-density farming practices elevate the risk of disease outbreaks, including contamination by pathogenic bacteria such as Vibrio vulnificus.

This Gram-negative bacterium is associated with serious health

RESULTS & DISCUSSION

Table 1: Prevalence of V. vulnificus in wet market and hypermarket			
Location of samples	Total of samples collected	Positive samples with V. vulnificus	Percentage of positive samples
Wet market	34	14	51.85%
Hypermarket	33	13	48.15%
Total	67	27	40.30%

Table 2: Most probable number of V. vulnificus

Mean MPN/g of Location of

P-value

No. significant

issues, including gastroenteritis, which can lead to severe wound infections or fatality. It also poses a substantial public health risk due to the emergence of multidrug resistance (Letchumanan et al., 2015).

Objectives:

- 1. To determine the prevalence rate and quantify the presence of Vibrio vulnificus in a whiteleg shrimp.
- 2. To examine antibiotic resistance profile of isolated Vibrio vulnificus.

samples	V. vulnificus	SD	P-value	difference in
Wet market	1.4 × 10 ⁴	2.1 × 10 ⁴	0.432	MPN betwee
Hypermarket	8.2 × 10 ³	1.7 × 10 ⁴		hypermarke

Table 3: Antibiotic susceptibility test V. vulnificus

Antibiotic	Disk content (µg)	Number of Isolates in Zone Diameter Breakpoints (%)					
		Susceptible	(%)	Intermediate	(%)	Resistant	(%)
Ciprofloxacin	5	2	20	3	30	5	50
Ceftazidime	30	4	40	3	30	3	30
Doxycycline	30	6	60	2	20	2	20
Ampicilin	10	2	20	0	0	8	80
Ofloxacin	5	1	10	6	60	3	30
Tetracycline	30	3	30	4	40	3	30
Chloramphenicol	30	0	0	8	80	2	20
Gentamicin	10	0	0	3	30	7	70
Levofloxacin	5	0	0	7	70	3	30
Penicilin	10	0	0	2	20	8	80
Amikacin	30	2	20	5	50	3	30
Amoxycillin	20	0	0	0	0	10	100
Imipenem	10	2	20	0	0	8	80
Meropenem	10	0	0	6	60	4	40
Azithromycin	15	0	0	4	40	6	60
Cefepime	30	1	10	3	30	6	60
Cefuroxime	30	3	30	1	10	6	60
Piperacillin-Tazobactam	100/10	3	30	2	20	75	50

Antibiotics	No. and percentage of isolates that were resistance	Multiple Antibiotic Resistance (MAR) index		
Amoxycillin	10 (100%)			
Ampicillin	8 (80%)	0.0		
	0 (0 0 0 /)	0.2		

CONCLUSION

- 40.30% of the samples were contaminated with V. vulnificus and there was no significant difference in MPN between the wet market and hypermarket.
- 40% of V. vulnificus were highly resistant to ampicillin, penicillin, amoxicillin, and imipenem and the MAR index showed a value of 0.2.
- The results highlighted concerns regarding bacterial contamination levels in wet and hypermarkets, which lead to a potential health risk. Continued monitoring of the presence and antimicrobial resistance profile of Vibrio Vulnificus in various aquatic sources is necessary to ensure the seafood safety.

REFERENCES

- Amalina, N.Z., Santha, S., Zulperi, D., (2019). Prevalence, antimicrobial susceptibility and plasmid profiling of Vibrio spp. isolated from cultured groupers in Peninsular Malaysia. BMC Microbiol, 19, 251.
- Letchumanan, V., Pusparajah, P., Tan, L.T.H., Yin, W.F., Lee, L.H., Chan, K.G. (2015). Occurrence and antibiotic resistance of Vibrio parahaemolyticus from shellfish in Selangor, Malaysia. Front. Microbiol. 6, 1417.

Dr. Noor Azira Abdul Mutalib n_azira@upm.edu.my

Lee Epeng 3epeng93@gmail.com

Nor Adeline Sheena Faizal sheena_zadel@yahoo.com

https://sciforum.net/event/Foods2024