

28–30 October 2024 | Online

Development of ice-cream cones from cassava flour and corn starch

Huseina M. Njinoh¹, Divine B. Nde^{1,2}

•¹Department of Nutrition, Food and Bio-Resource Technology, College of Technology, University of Bamenda, Cameroon •²Present address: Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803, USA

INTRODUCTION & AIM

- ✓ Wheat consumption in some African is almost entirely dependent on imports countries¹
- High market prices of wheat has provoked the need to explore potential markets of other cereal and tuber flours as a substitute to wheat flour in flour products²
- Cassava and cassava flour readily available in the tropics.
- This study was aimed at producing and optimizing ice cream cones from cassava flour and corn starch
- Fight against cassava waste and generate income for local farmers

METHOD

Experimental decign

Modelling

Cassava cone production process

Experimental design				Modeling				
S/N	X1	X2	X3	$Y = b_0 + \sum b_{i_1} $				
	(⁰ C)	(min)	(blends)	X1=Temperature, X2				
1	100	20	20					
2	200	12.5	80					
3	100	20	50	80- 				
4	200	5	50					
5	100	5	80	S0- 50- 50- 50- 50- 50- 50- 50- 50- 50- 5				
6	200	5	80	40-40-				
7	100	20	80	40 50 60 70 80 WAC Predicted RMSE=7.3866 RSq=0.89 DVclue= 0.0576				
8	200	20	80	PValue=0.0576				
9	100	12.5	50	2500				
10	200	12.5	50	• • •				
11	150	12.5	50	aking str				
12	150	5	50	pre				
13	150	12.5	20	1000 1500 2000 2500 breaking strength Predicted RMSE=178.11				
14	150	12.5	80	Good fit of experimental with theore				
15	150	20	50					
RESULTS & DISCUSSION								
Reg	ression	analysis						
		WAC _(Y2)		ICP _(Y3) Breaking Strength _(Y4)				

$(X_i) + \sum b_{ij} X_{ij} + \sum b_{ii} X_i^2 + \varepsilon$

?=Time, X3 = cassava flour/starch ratio.

Surface response curves for the responses studied

Optimum processing conditions for the cones: Temperature 180°C, time 11min, and blend ratio 80% to 20%.

	coefficient	P-value	Coefficient	P-value	Coefficient	P-value
b0	52.6197	0.0024*	19.8646	0.0065*	1621.8219	0.0008*
b1	4.8838	0.3300	0.7553	0.7399	-61.6166	0.5969
b2	3.4924	0.4081	0.0079	0.9967	-74.4098	0.4613
b3	17.0051	0.0081*	5.2819	0.0392*	680.9648	0.0009*
b11	7.0738	0.1958	1.3429	0.5771	-69.2335	0.5711
b22	13.1184	0.2633	6.2689	0.2611	-2.7740	0.9916
b33	3.7580	0.4378	0.9960	0.6582	36.7727	0.7463
b12	5.4849	0.1454	2.4819	0.1617	-178.1918	0.0679
b13	4.2994	0.4777	2.7035	0.3568	102.5869	0.4821
b23	1.4356	0.7598	0.4486	0.8402	44.9237	0.6925
R ²	0.89		0.86		0.95	
RMSE	7.38		3.51		178.11	
P-value	0.057	6	0.0909		0.0099	

Contact: njinohhuseina@gmail.com

Optimum WAC	, ice cream peri	meability and bi	reaking strength:
-------------	------------------	------------------	-------------------

Optimized sample: 81.67±1.15%, 26.67±1.53min, 2529±13.75N/m²,

Commercial sample: 64.67±0.58%, 6.33±0.58min, 1279±2.08N/m².

CONCLUSION

Cones with better ice cream permeability with no significant difference in sensory profile compared to commercial one was produced from cassava flour

FUTURE WORK / REFERENCES

Study cone production in a continuous pilot process Kigozi et al., 2016, JAFSAT Rismawanti et al., 2020, J Food Life Sci

https://sciforum.net/event/Foods2024