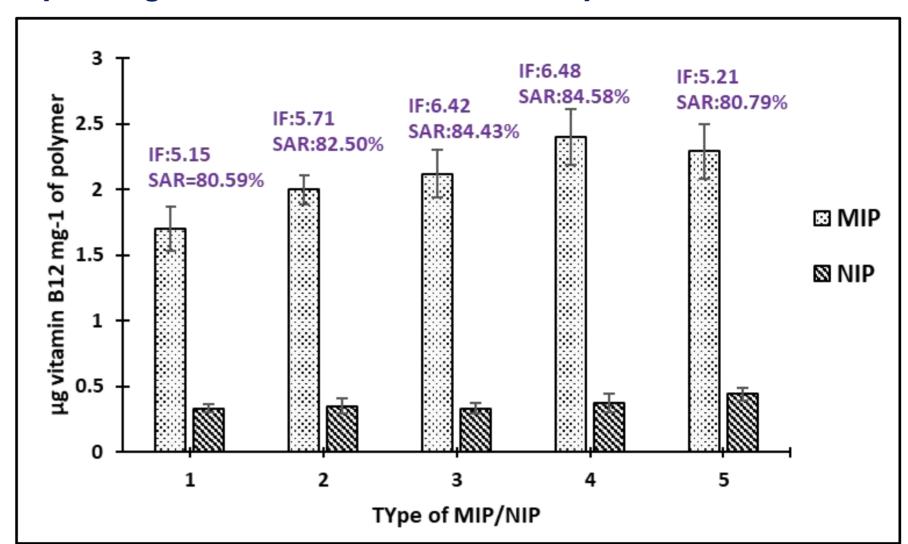


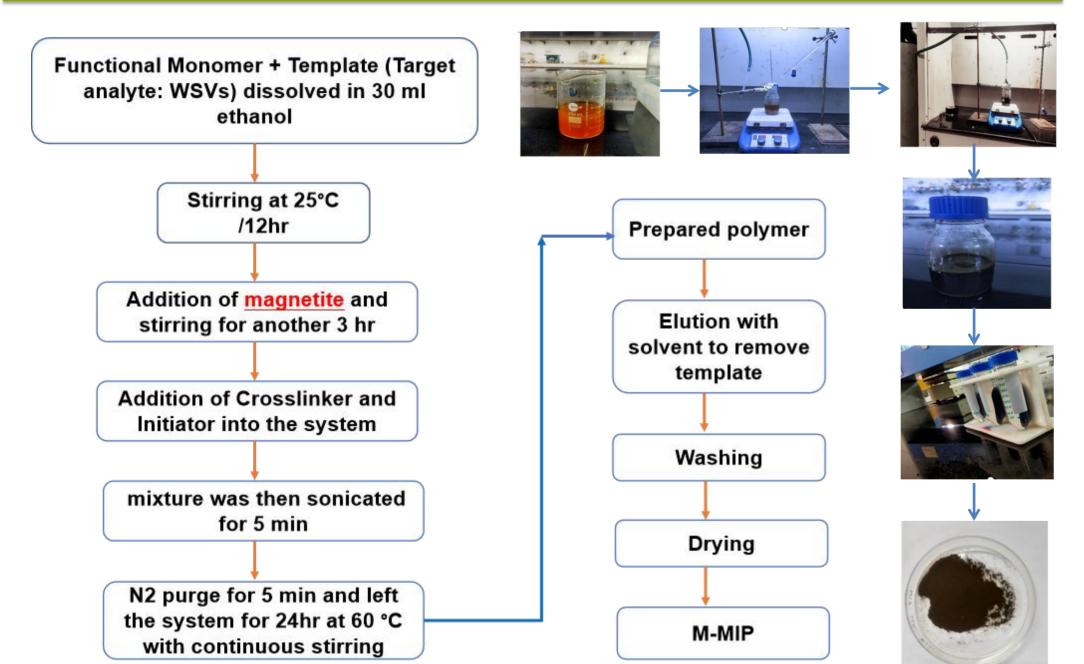
The 5th International Electronic Conference on Foods

28-30 October 2024 | Online

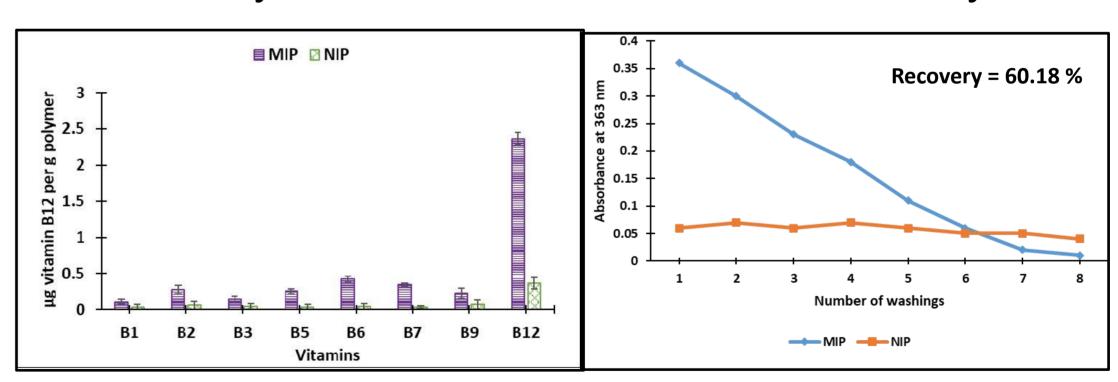

Synthesis and characterization of magnetic molecular imprinted polymer (MMIP) for extraction of vitamin B12 from milk

Richa Singh, Bhuwal Deshmukh, Rajan Sharma, Sumit Arora ICAR-National Dairy Research Institute, Karnal-132001, Haryana, India

INTRODUCTION & AIM


- Quantifying low levels of vitamin B12 in milk (0.5 µg/100 mL) requires selective extraction, currently using costly immunoaffinity SPE columns
- Molecularly imprinted polymer (MIP)-based SPE offers a cost-effective alternative
- MIPs are synthetic polymers with selective recognition sites, formed using a template, monomer, crosslinker, and initiator

RESULTS & DISCUSSION


Imprinting Factor and Selective Adsorption Ratio after 24 h

- The proportions of these components are crucial for optimizing binding efficiency
- This study evaluates varying MIP ratios to improve binding capacity and selectivity, with the best MIPs used for vitamin B12 extraction from milk

METHOD

- MMIP 4 (T: FM- 4; FM: C- 10; I: FM- 16) exhibited the highest binding capacity (2.4 ± 0.21 µg per mg polymer), good Imprinting factor (6.48) and good selectivity (84.58)
- Cross-reactivity from other B vitamins ranged from 2.30% for B1 to 8.43% for B6
- Influence of solvents and pH showed better selectivity in aqueous solutions at pH 6.5–7.0

Cross reactivity of MMIP/MNIP-4

Extraction of Vit B12 from milk

CONCLUSION

Recovery of 60.18% was obtained for milk system

Different ratios of Template (T), Functional Monomer (FM), Crosslinker (C), and Initiator (I) for the preparation of imprinted polymer

Magnetic molecular imprinted polymer (MMIP)	Functional monomer (MAA): Template (Cyanocobalamine)	Crosslinker (EGDMA): Functional monomer (MAA)	Functional monomer (MAA): Initiator (AIBN)
MMIP 1	2	5	16
MMIP 2	4	5	16
MMIP 3	6	5	16
MMIP 4	4	10	16
MMIP 5	4	10	5

Binding Capacity (µ**g vitamin B12 per mg of polymer**) Vitamin B12 bound by MMIP/MNIP

Amount of MMIP or MNIP in per mL of solution

Imprinting Factor (*IF*) = $\frac{\mu g \ vitamin \ B12 \ bound \ by \ per \ mg \ MMIP}{\mu g \ vitamin \ B12 \ bound \ by \ per \ mg \ MNIP}$

Selective Adsorption ratio (SAR)

 $(\mu g \ vitamin B12 \ bound \ by \ per \ mg \ MMIP) - (\mu g \ vitamin B12 \ bound \ by \ per \ r$

 μg vitamin B12 bound by per mg MMIP

- Specific MIP was prepared for extraction of vitamin B12 from milk
- Ratios of components during MMIPs preparation significantly affect binding performance of MMIP with vitamin B12
- MMIP-4 had highest binding capacity, excellent selectivity with minimal interference

FUTURE WORK / REFERENCES

 Additional combinations needs to be explored to improve extraction efficiency from milk

https://sciforum.net/event/Foods2024