

The 2nd International Electronic Conference on Actuator Technology

04-07 November 2024 | Online

Fundamental Characteristics of Stiffness-Adjustable Soft Actuator Made of Three Functional Polymer Materials Using FDM 3D Printer

OKai Sawada, Shuichi Wakimoto, Daisuke Yamaguchi, Takefumi Kanda **Okayama University**

INTRODUCTION & AIM

Research Background

Thermal properties of the actuator (90 W)

RESULTS & DISCUSSION

MATERIALS & STRUCTURE

Polymer Materials Used In This Study

Driving characteristics of the actuator

Actuator Reaction Force Measurement

- Measuring system
 - Load Cell Camera
- Measuring Results
- Rubber state (Electric power applied)
 - Reaction Force: 125.2 mN
- Glass state (No Electric power applied) Reaction Force: 140.5 mN

CONCLUSION

The actuator is created using three different materials at once by 3D printer

The developed actuator can be curved at low stiffness condition

The actuator's stiffness can be higher with maintaining the deformation state

ACKNOWLEDGMENTS

This study was partly supported by JSPS KAKENHI Grant Number JP23K03644 and JKA through its promotion funds from KEIRIN RACE

REFERENCES

[1] SMP technologies : http://www2.smptechno.com/smp/ [2] Raise 3D TDS : https://raise3d.jp/download#download05 [3] RECREUS TDS :

http://idarts.co.jp/3dfs/data_sheet/recreus/CONDUCTIVE FILAFLEX_TDS_2021.pdf

https://sciforum.net/event/IECAT2024