2nd Canadian Peptide and Protein CPPC **Community Virtual Symposium** 2024

DECEMBER 16, 2024 ONLINE

Biopeptides Derived from Whole Milk Fermentation by Co-culture of Lacticaseibacillus casei (LBC 237) and Limosilactobacillus fermentum (LBF 433): Peptidomics of Peptides with Potential Anti-inflammatory Activity

Eduarda Eliza Redin², Emyr Hiago Bellaver¹, Ingrid Militão da Costa², Liziane Schittler Moroni², Aniela Pinto Kempka^{1,2*}

1Santa Catarina State University, Department of Animal Production and Food Science, Multicentric Graduate Program in Biochemistry and Molecular Biology, Lages, SC, Brazil. ² Santa Catarina State University, Department of Food Engineering and Chemical Engineering, Pinhalzinho, SC, Brazil.

Introduction

Bioactive peptides with anti-inflammatory activity have garnered growing interest due to their therapeutic potential in modulating the inflammatory response and as alternatives to traditional anti-inflammatory drugs. Frequently derived from food proteins, these peptides are released through hydrolysis and act on specific molecular pathways, such as COX-2.

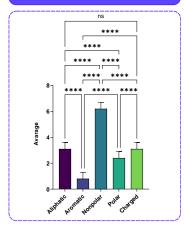
This study aimed to identify the peptidomic profile associated with the biochemical properties of these biopeptides using milk fermentation through bacterial co-culture.

Methods

The peptides were obtained through milk fermentation using a bacterial co-culture. Following identification through biochemical techniques, in silico tools were employed to identify the peptides, verify their biochemical properties, and assess the bioactivity of the molecules obtained.

Conclusion

These findings indicate the potential of biopeptides as safe and effective therapies, modulating inflammatory responses without adverse effects.


Results

Generality of peptides		Peptidomic		
730	Peptides were identified	Peptidomics of the 10	Peptidomics of the 10 selected peptides	
50,41%	Showing anti-inflamatory potential	Parameter	Value	
		Average number of fragments	11.8	
84	Peptides were initially selected based on hydrophobicity similar to that	Average molecular mass	1400.26 D 7.01	
	aspirin 	Isoelectric point (pl)	52.36%	
10	rigorous screening for anti- inflammatory activity, low allergenicity, absence of toxicity, and good water solubility, were selected	Average hydrophobicity	52.36%	
		·		

ptidomic

11.8 1400.26 Da 7.01 52.36%

Amino acid composition

References

Acquah, C., Di Stefano, E., & Udenigwe, C. C. (2018). Role of hydrophobicity in food peptide functionality and bioactivity. Journal of Food Bioactives, 4, 88-98.

Dharmisthaben, P., Basaiawmoit, B., Sakure, A., Das, S., Maurya, R., Bishnoi, M., ... & Hati, S. (2021). Exploring potentials of antioxidative, antiinflammatory activities and production of bioactive peptides in lactic fermented camel milk. Food Bioscience, 44, 101404. Guha, S., & Majumder, K. (2019). Structural-features of food-derived bioactive peptides with anti-inflammatory activity: A brief review. Journal of Food Biochemistry, 43(1), e12531.

