13-15 November 2024 | Online

Haematological profile of congenital heart disease patients undergoing surgical correction: A case-control observation study from North India

Shadab Ahamad¹⊠, Prachi Kukshal¹, Ajay Kumar¹, Anagha Tulsi², Amita Sharma², Paramvir Singh²

¹Sri Sathya Sai Sanjeevani Research Foundation, Palwal, Haryana, India-121102

²Sri Sathya Sai Sanjeevani International Centre for Child Heart Care & Research, Palwal, Haryana, India-121102

Email: shadab1997ansari@gmail.com

INTRODUCTION

7.9 million children are born with birth defects worldwide annually, among them ~ 28 % are only congenital heart diseases (CHDs)[1]

Need-Supply Gap in Pediatric Cardiac Care High Lack of Lack of Un-Un-In-Late **Mal-nutrition Patient** affordability **Diagnosis** availability accessibility Research **Awareness** Volume

Detection

diagnosed by fetal sonography.^[2]

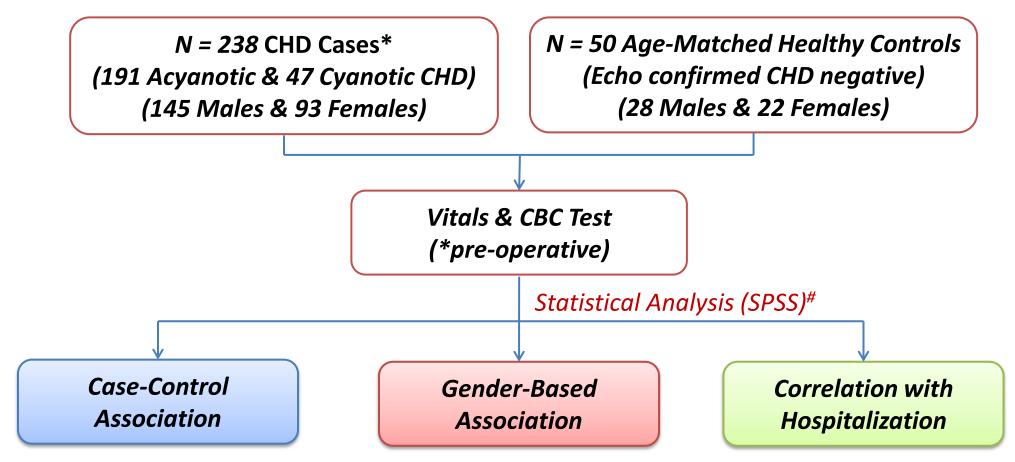
~ 90 % patients don't have adequate access to essential diagnostics while ~ 40 % CHDs can be

Intervention

✓0.5 per million people get intervention, resulting ~ 40 % deaths & 4th contributor to Global Infant Mortality in low-med. income countries (LMICs).^[2] ✓Average cost of Cardiac Intervention: INR 2–5 Lakhs (USD 2400-6000)

Prevention

✓~ 30-40 % causal factors are either genetic or epigenetic, rest ~ 60 % is unknown. [3]
✓~ 74 % of Indians couldn't afford a healthy diet.


Complete blood count (CBC) is a routine diagnostic test in clinical settings & has been suggested to be predictive of cardiovascular diseases.[4]

OBJECTIVE

To find correlation of CBC indices with CHD and hospital status of patients

METHODOLOGY

- ✓ Study Design: Case-control retrospective observational study
- ✓ IEC Approved with Written Informed Consent
- ✓ Exclusion: Patients who had recent blood/platelet transfusion, iron supplementation, syndromic features, or any chronic disorders

[#]Statistical Tests: Student t-test, $\chi 2$ test and Multivariate logistic regression

CONCLUSION

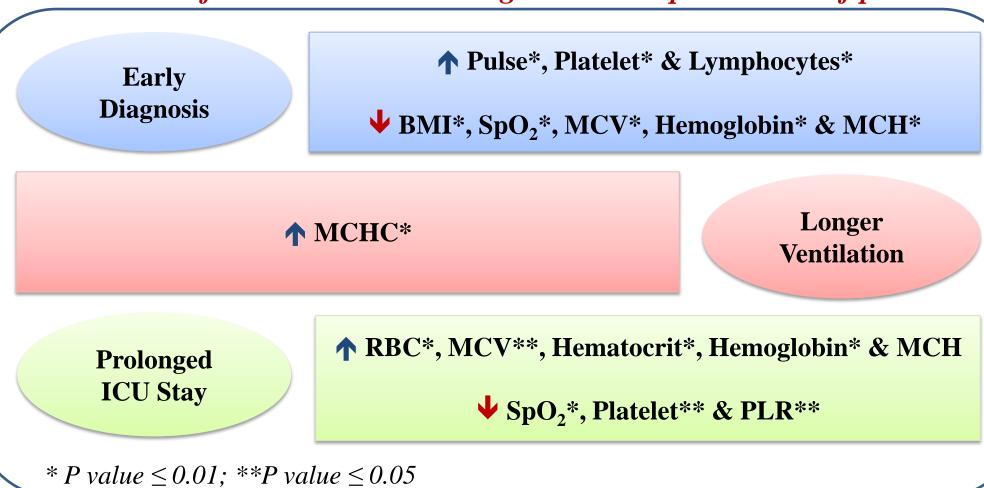
- ✓~ 20 % CHD patients require treatment within 1st year of life, hence early diagnosis play a vital role in the overall survival rate.
- ✓The simplicity, reproducibility, wide availability and cheaper cost of the CBC test shows its advantage for disease diagnosis in LMICs.
- ✓ Replication in a larger cohort can give a more validated conclusion & give an insight into blood biomarkers for prognostic evaluation of the disease.

ACKNOWLEDGEMENT

The authors thank the patients who underwent cardiac treatment at **Sri Sathya Sai Sanjeevani International Hospitals-** *a Totally free of cost tertiary care centre*, for their participation.

REFERENCES

- [1] Christianson A, et al. March of Dimes. 2006.
- [2] Saxena A. *Indian Pediatr*. **2018**;55:1075–1082.
- [3] Hoffman JI, et al. J Am Coll Cardiol. **2002**; 39(12):1890-1900.
- [4] Monterio JG, et al. Curr Cardiol Rev. **2019**; 15:274-282.


RESULTS & DISCUSSION

Case-control and gender based association of CBC indices with CHD

Variables	Trend (P value w.r.t. controls)			P value within cases	
	All CHD Cases	Acyanotic CHD	Cyanotic CHD	Acyanotic Vs Cyanotic CHD	Males Vs Females
BMI	\(\bigvert\) (0.000)	(0.000)	4 (0.000)	0.340	0.310
Pulse	^ (0.000)	(0.000)	(0.000)	0.520	0.620
SpO_2	\(\bigvert\) (0.000)	(0.001)	4 (0.000)	0.000	0.008
RBC	↓ (0.920)	(0.000)	(0.000)	0.000	0.003
MCV	\(\bigvert\) (0.000)	(0.000)	\(\bigsigma\) (0.004)	0.010	0.120
RDW	↑ (0.420)	^ (0.740)	1 (0.040)	0.045	0.310
Hematocrit	\(\bigsigm\) (0.001)	(0.000)	1 (0.000)	0.000	0.040
Platelets	^ (0.100)	(0.030)	↓ (0.470)	0.002	0.910
Hemoglobin	\(\bigsig\) (0.004)	(0.000)	(0.000)	0.000	0.020
MCH	\(\psi\) (0.005)	U (0.002)	↓ (0.350)	0.550	0.090
MCHC	^ (0.010)	(0.001)	↓ (0.480)	0.001	0.510
Lymphocytes	^ (0.000)	(0.000)	1 (0.000)	0.860	0.180
PLR	\(\psi\) (0.000)	(0.000)	4 (0.000)	0.002	0.290

BMI: body mass index; SpO_2 : oxygen saturation; RBC: red blood cell; MCV: mean corpuscular volume; RDW: red cell distribution width; MCH: mean corpuscular hemoglobin; MCHC: mean corpuscular hemoglobin conc.; PLR: platelet-to-lymphocyte ratio; \uparrow : increased; \checkmark : decreased. Significant P values are in **bold** font.

Correlation of CBC indices with diagnosis & hospitalization of patients

