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Abstract: Natural products, particularly flavonoids, which possess medicinal properties such as an-

ticancer, anti-inflammatory, and antioxidant effects are known to inhibit the xanthine oxidase (XO) 

enzyme, which plays a key role in purine metabolism and generates reactive oxygen species (ROS). 

Inhibiting XO may help manage diseases associated with uric acid accumulation and ROS produc-

tion. Molecular docking was performed to analyze the interactions of two benzoxanthone-flavonoid 

compounds, Artonin E and (+)-Artobiloxanthone, with the XO enzyme. These compounds demon-

strated excellent stability within the site active of the XO enzyme, with estimated docking scores of 

−9.64 and −7.99 kcal/mol, respectively, and formed significant interactions, similar to those observed 

in the quercetin-XO complex. Additionally, ADMET analyses suggest that these compounds have 

promising therapeutic potential. 

Keywords: XO enzyme; benzoxanthone-flavonoids; molecular docking; ADMET analysis 

 

1. Introduction 

Natural products have long been recognized as a valuable source of bioactive com-

pounds [1], playing a vital role in traditional medicine and modern drug discovery. These 

compounds, including polyphenols, flavonoids, benzoxanthones, and other phytochemi-

cals, have garnered significant attention due to their diverse biological activities and ther-

apeutic potential [2]. Among them, flavonoids stand out as a prominent group of poly-

phenols, widely distributed in fruits, vegetables, tea, and other plant-based foods. As sec-

ondary metabolites, flavonoids serve various ecological functions in plants, such as de-

fense against pathogens and ultraviolet radiation [3]. In humans, they exhibit a broad 

spectrum of pharmacological effects, making them a subject of increasing interest in me-

dicinal chemistry [4]. 

The health benefits of flavonoids are multifaceted. Their anticancer properties have 

been attributed to their ability to modulate various signaling pathways involved in cell 

proliferation, apoptosis, and angiogenesis [5]. In addition, flavonoids possess anti-inflam-

matory effects, acting through the inhibition of pro-inflammatory mediators such as cyto-

kines and enzymes like cyclooxygenase [6]. Another critical role of flavonoids is their an-

tioxidant activity, which enables them to neutralize free radicals and reduce oxidative 

stress, a contributing factor in the pathogenesis of chronic diseases such as cardiovascular 

disorders, neurodegenerative conditions, and diabetes [7]. 

One of the key mechanisms by which flavonoids exert their therapeutic effects is 

through the inhibition of the XO enzyme. XO is a molybdenum-containing enzyme re-

sponsible for catalyzing the oxidation of hypoxanthine to xanthine and subsequently to 
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uric acid, a process that generates ROS as byproducts. While ROS play essential roles in 

cellular signaling and immune response, their excessive production can lead to oxidative 

damage, contributing to the development of conditions such as hyperuricemia, and car-

diovascular diseases [8]. 

The inhibition of XO, therefore, emerges as a promising therapeutic approach for 

managing diseases characterized by abnormal purine metabolism and oxidative stress. 

Flavonoids, with their potent XO inhibitory activity, have the potential to serve as natural 

alternatives or complementary agents to conventional drugs such as allopurinol, a well-

known XO inhibitor. 

Recent studies have further explored the molecular interactions between flavonoids 

and XO, utilizing advanced techniques like molecular docking and structure-activity re-

lationship (SAR) analysis [9]. These investigations provide deeper insights into how spe-

cific flavonoids bind to the active site of XO, stabilize within the enzyme, and inhibit its 

activity. 

In this context, we studied the interaction mode of two known benzoxanthone-fla-

vanoids (Artonin E and (+)-Artobiloxanthone) to verify their ability to inhibit the XO en-

zyme and to show its capacity as an antioxidant agent; the studies were carried out by 

molecular docking and ADMET analysis. 

2. Materials and Methods 

2.1. Molecular Docking 

The X-ray crystal structure of the Quercetin-XO complex (PDB: 3NVY) was obtained 

from the RSC protein data bank [10]. The structure was prepared using the Protein prep-

aration wizard in the Schrödinger suites software package. The three-dimensional struc-

tures were generated using Maestro software and further optimized with Ligprep using 

the OPLS3e force field [11]. The final prepared PDB files for both the protein and benzo-

xanthone-flavanoids compounds were submitted for the docking process. Docking stud-

ies were conducted using the Glide software with extra precision settings. The output files 

containing the docked compounds in complex with the XO enzyme were visualized using 

Chimera X [12]. 

2.2. ADMET Prediction 

To evaluate the possibility of our benzoxanthone-flavanoids compounds successfully 

advancing through clinical trials, we conducted an analysis based on several key param-

eters, including Lipinski’s Rule of Five, Veber’s Rule, Egan’s Rule, polar surface area 

(TPSA), the number of rotatable bonds, as well as ADME/T properties and bioactivity 

scores. These calculations were carried out using online tools SwissADME, ProTox, and 

Molsoft server [13]. 

3. Results and Discussion 

3.1. Molecular Docking 

To investigate the interactions between the two selected benzoxanthone-flavonoids, 

Artonin E and (+)-Artobiloxanthone, and the XO enzyme, molecular docking was per-

formed using the quercetin-XO complex. 

The molecular docking protocol was validated by re-docking quercetin into the active 

pocket of the XO enzyme, where the docked quercetin nearly overlapped with the crys-

tallized form (RMSD = 0.24 Å). Quercetin demonstrated significant stability in the active 

pocket (docking score: −9.33 kcal/mol) due to the formation of several hydrogen bonds 

between the hydroxyl and carbonyl groups of its flavone fragment and the residues Thr 

1010, Val 1011, Arg 880, Glu 1261, and Ala 1079. Additionally, the flavone fragment en-

gaged in π-π stacking interactions with the aromatic rings of residues Phe 1009 and Phe 

914 (Figure 1). 
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Figure 1. 3D binding interactions of quercetin after docking calculations in the active site of XO 

enzyme. The amino acid residues were shown as grey stick model and H-bonds were shown as 

black lines. 

The two studied compounds, Artonin E and (+)-Artobiloxanthone, exhibited excel-

lent stability within the active site of the XO enzyme, with docking scores of −9.64 and 

−7.99 kcal/mol, respectively. 

Artonin E, which had a better docking score than quercetin, formed two hydrogen 

bonds with the Asn 768 and Ser 876 residues. It also engaged in π-π stacking interactions 

with Phe 649 and a π-cation interaction with the Lys 771 residue. Hydrogen bonding is 

crucial in maintaining the compound’s position and orientation, facilitating more effective 

inhibition. Additionally, Artonin E formed significant hydrophobic interactions, similar 

to those observed with quercetin, involving residues such as Phe 1009, Phe 914, Phe 1013, 

and Met 770. 

Regarding the compound (+)-Artobiloxanthone, it is equally significant as Artonin E. 

This compound formed two hydrogen bonds with the residues Ser 876 and Glu 802. Ad-

ditionally, it engaged in π-π stacking interactions with Phe 1013 and a π-cation interaction 

with Lys 771 (Figure 2). 

All of these interactions contribute to a lower energy state, reinforcing the stability of 

the ligand-enzyme complex. The presence of these interactions suggests that Artonin E 

(+)-and Artobiloxanthone are not only able to fit well into the binding site but also can 

form multiple stabilizing interactions that enhance its inhibitory potential. 

 

 

Artonin E (+)-Artobiloxanthone 
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Figure 2. 3D binding interactions of Artonin E and (+)-Artobiloxanthone after docking calculations 

in the active site of XO enzyme. The amino acid residues were shown as grey stick model and H-

bonds were shown as black lines. 

3.2. ADMET Prediction 

A potential drug candidate must undergo various tests to evaluate its ability to pen-

etrate the organism, including assessments of pharmacokinetic properties and toxicity 

levels. A comprehensive prediction of the ADMET properties for the two studied com-

pounds was conducted, and the results are presented in the table below. 

The ADME study revealed that none of the compounds violate the Lipinski’s rule of 

five, which is a set of criteria used to assess the drug-likeness of a chemical compound 

based on its physicochemical properties, including molecular weight, lipophilicity, hydro-

gen bonding capacity, and solubility. Moreover, according to Tox-Prediction, both com-

pounds exhibited a toxicity level of 2500 mg/kg, placing them in Class V. This indicates 

that the compounds may be harmful if swallowed”. (Table 1). 

Table 1. Pharmacokinetic parameters and drug likeness score (DLS) Artonin E and (+)-Artobiloxan-

thone. 

          Proprieties 

 

Compounds  

Molecular 

Weight 

(g/mole) 

Rotatable 

Bonds 

H-Bond 

Donor 

H-Bond Ac-

ceptor 
Violations 

Log Po/W 

iLogP 
Log S ESOL 

Artonin E 436.45 3 4 7 0 3.72 −5.98 

(+)-Artobiloxanthone 408.40 2 4 7 0 3.16 −5.56 

         Proprieties 

 

Compounds  

Bioavailabil-

ity Score 
BBB 

Log Kp 

(cm/s) 
GI TPSA (°A2) DLS LD50 (mg/kg) 

Artonin E 0.55 2.36 −5.29  Low  120.36 −0.36 2500 

(+)-Artobiloxanthone 0.55 2.45 −5.50 High  120.36 −0.77 2500 

4. Conclusions 

In summary, the in silico study of two benzoxanthone-flavonoids, Artonin E and (+)-

Artobiloxanthone, demonstrated their potential as effective xanthine oxidase inhibitors 

through molecular docking and ADMET analysis. Both compounds exhibited strong 

binding affinities and stability within the active site of XO enzyme, surpassing the refer-

ence compound quercetin in terms of docking scores and interaction strength. The AD-

MET analysis confirmed favorable pharmacokinetic properties and low toxicity levels, 

making these flavonoids promising candidates for further drug development, especially 

in managing diseases related to oxidative stress and uric acid accumulation. These find-

ings highlight the therapeutic potential of natural products in drug discovery, especially 

for conditions involving XO inhibition. 
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