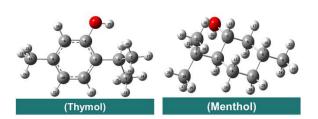
The 28th Intl. Electronic Conference on Synthetic Organic Chemistry

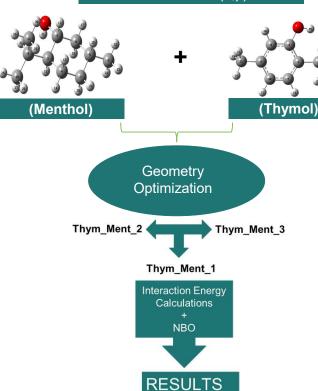
15-30 November 2024 | Online

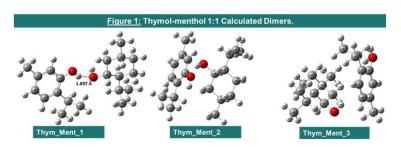

Investigating the Molecular Interactions of Thymol and Menthol as Green Solvents Using DFT Methods

•M. Hammar^{1,2}, N. Benbrahim¹ & A. Negadi²,

- •¹ Laboratory of Advanced Materials and Physicochemistry for Environment and Health, Djillali Liabes University, Sidi Bel Abbes, Algeria.
 - •2 Laboratory of Thermodynamics and Molecular Modeling, Abou Bekr Belkaid University, Tlemcen, Algeria.

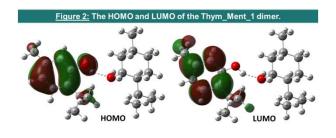
INTRODUCTION & AIM


This work investigates Thymol and Menthol mixtures' conformational stability and interaction energies to improve our knowledge of green solvents.


METHOD

Gaussian 09 Software

Density **F**unctional **T**heory (**DFT**): B3LYP/6-31G(d,p)



RESULTS & DISCUSSION

<u>Table 1:</u> Electronic Properties Of Thymol-menthol 1:1 Calculated Dimers.				
	Relative Energy (kcal/mol)	Corrected Complexation Energy (kcal/mol)	Gap (eV)	
Thym_Ment_1	0.0	-10.4	5.840	
Thym_Ment_2	5.0	-7.4	5.944	
Thym_Ment_3	8.5	-7.3	5.963	

<u>Table 2:</u> Electric Properties Of Thymol-menthol 1:1 Dimers.			
Dimer	Dipole moment (Debye)	Polarizability (α) (kcal/mol)	
Thym_Ment_1	3.23	138853.4	
Thym_Ment_2	2.79	134284.5	
Thym_Ment_3	2.64	134151.5	

CONCLUSION

- Thym_Ment_1, featuring a strong O-H...O-H hydrogen bond, exhibited the highest stability, with the lowest electronic and complexation energies, as well as a higher chemical reactivity.
- The dimeric form 1:1 Thymol:Menthol probably exists under the form Thym_Ment_1. It remains to be confirmed by calculations in solution and/or liquid form.