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Abstract: This study presents a comprehensive approach to designing and optimizing small mole-

cule inhibitors targeting Salt-Inducible Kinases 2 and 3 (SIK2 and SIK3), crucial regulators of cellular 

signaling pathways implicated in various diseases, including cancer, inflammation, and metabolic 

disorders. By integrating advanced computational methods and expert-driven chemical synthesis, 

we generated a diverse library of potential inhibitors and meticulously evaluated their pharmaco-

logical properties and binding affinities to SIK2 (Appendix C). Through a rigorous analysis of gen-

erated data and molecular docking simulations, we successfully identified lead compounds with 

promising therapeutic potential. Subsequently, employing iterative chemical modifications guided 

by human expertise, we further optimized these leads, enhancing their efficacy and specificity. Ad-

ditionally, employing molecular dynamics simulations provided valuable mechanistic insights into 

the dynamic behavior of optimized compounds within the complex biological environment, eluci-

dating their potential as effective inhibitors of SIK2 activity. Our findings underscore the efficacy 

and significance of an integrated computational and experimental approach in the development of 

novel therapeutics targeting SIK2 and SIK3 (Appendix D). By bridging computational predictions 

with experimental validation, this approach not only accelerates the drug discovery process but also 

increases the likelihood of identifying clinically relevant compounds. Furthermore, the insights 

gained from this study lay a solid foundation for future preclinical and clinical investigations, pav-

ing the way for the development of effective treatments for diseases associated with dysregulated 

SIK2 and SIK3 signaling pathways. 
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1. Introduction 

Salt-Inducible Kinases 2 and 3 (SIK2 and SIK3) are key regulators of cellular metab-

olism and transcriptional regulation, implicated in various diseases such as cancer, in-

flammation, and metabolic disorders. Their pivotal roles make them attractive therapeutic 

targets, yet the development of selective and potent inhibitors for these kinases presents 

significant challenges due to their structural intricacies and biological functions. 

In this study, we tackle these challenges by adopting a comprehensive computational 

approach, integrating multiple advanced methodologies, including de novo drug design, 

fragment-based drug design (FBDD), molecular docking, covalent docking, and molecu-

lar dynamics simulations [1]. By leveraging these cutting-edge techniques, we aimed to 

streamline the identification and optimization of novel small molecule inhibitors with 

strong binding affinities, high specificity, and favorable pharmacokinetic properties. This 
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approach not only accelerates the drug discovery process but also enhances the potential 

for developing effective therapeutics targeting SIK2 and SIK3, addressing diseases associ-

ated with dysregulated signalling pathways. 

2. Methodology 

As the reference molecule for AI-driven molecule generation, we selected 

“CNc1ncc2cc(-c3ccc(-c4ncccc4F)cc3Cl)c(=O)n(C[C@H]3OCC@HCO3)c2n1” 

(CHEMBL5090394) because of its effective binding within the SIK2/3 active site. We cu-

rated a large dataset of potential lead compounds by retrieving over 71 million SMILES 

strings from the PubChem database (Appendix A). These compounds were first filtered 

using Lipinski’s Rule of Five and the Ghose filter to ensure favorable drug-like properties. 

The filtering process reduced the dataset to 557,882 compounds. Further refinement was 

achieved by applying Tanimoto similarity filtering using various fingerprints, which nar-

rowed the dataset to the top 250 candidates. These candidates exhibited high structural 

similarity to the reference molecule while maintaining diversity(Appendices B and C). 

Similarly, we extracted 235,444 compounds from the Zinc database and subjected 

them to identical filtering criteria. This process reduced the dataset to 187,979 compounds, 

from which the top 250 candidates were selected based on their Tanimoto similarity scores 

relative to the reference molecule. This dual-dataset approach provided a robust and di-

verse starting point for subsequent molecular docking and fragment-based design exper-

iments. 

We compiled eight smaller files—four each for the PubChem and Zinc datasets—

corresponding to the fingerprint types used. Each file contained the top three SMILES 

showing the highest similarity to the reference molecule within the pre-selected subset of 

250 SMILES, along with the reference SMILE itself. Additionally, eight more files were 

generated, each containing four randomly selected SMILES from the respective 250 

SMILE datasets, ensuring diversity in our analysis and a broader exploration of the chem-

ical space. This study employed two advanced chemical language models: “Molecular 

Design with Beam Search” and “REINVENT 4” to identify and optimize potential inhibi-

tors targeting Salt-Inducible Kinases 2 and 3 (SIK2 and SIK3). 

Phase 1: De Novo Molecular Generation 

In the initial phase, we utilized the “Molecular Design with Beam Search” model to 

generate SMILES strings analogous to a reference molecule for SIK2/3 inhibitors [1]. This 

process involved several fine-tuning strategies: 

Single-Step Fine-Tuning: The model was fine-tuned using four SMILES. 

Two-Step Fine-Tuning: adjusted the model with 250 SMILES closely related to the refer-

ence. 

Random Samples: Variations of fine-tuning processes using randomly selected SMILES. 

Phase 2: Fragment-Based Drug Design 

In Phase 2, fragment-based drug design (FBDD) was applied using both the “Molec-

ular Design with Beam Search” and “REINVENT 4” models [3]. This phase involved frag-

ment-based generation and optimization of molecules by employing fragment files(Ap-

pendix C) like “Enamine_MiniFrag.txt”, “Enamine_Single_Pharmacophore.txt”, and 

“Asinex_BioDesign.txt”. The process involved two steps: 

Fragment-Based Fine-Tuning: The model was further refined with fragment files. 

Lead Optimization: The lead was used as a basis for exploring optimization potential. 

The goal was to design a novel molecular entity distinct from known SIK2/3 inhibi-

tors, leading to the identification of a compound (Figure 1), 

“O=C(c1ccc2ccoc2c1)N1CCC(C(=O)N2CCCC2)CC1”. This compound, generated via 

two-step fine-tuning without including the reference molecule, showed close but slightly 

lower descriptor values compared to the reference compound. The molecular docking 
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analysis was performed using the X-ray crystal structure of the MARK2-SIK2 chimera 

(PDB ID: 8TXY) as the receptor. Receptor and ligand preparation involved processing the 

3D structures with AutoDock Tools, removing non-essential molecules, adding polar hy-

drogens, and correcting charges. 

 

Figure 1. 2d representation of chosen lead. 

Docking simulations employed both AutoDock 4 and AutoDock Vina, using a genetic 

algorithm and blind docking to explore potential binding pockets[2]. Key docking param-

eters included a grid size of 126 × 126 × 126 Å, energy range of 4, exhaustiveness of 300, 

and up to 20 binding modes. Following preliminary docking, the lead compound under-

went iterative human-guided optimization to enhance its pharmacological profile. Struc-

tural modifications were introduced, such as adding an amino bridge between a six-mem-

bered ring and a carbonyl group, forming an amino carbonyl group. Additionally, the six-

membered ring was modified into a benzene ring with repositioned nitrogen atoms, aim-

ing to improve reactivity and structural integrity. The resulting initial SMILE for human 

optimization, “O=C(CNc3cnc(C(=O) c2ccc1ccoc1c2)nc3)N4CCCC4”, led to the 

generation of 30 distinct optimized molecules. The optimization process involved divid-

ing the molecule into five segments, color-coded for different functional groups (e.g., in-

dole, carbonyl, pyrimidine) (Figure 2). Docking simulations validated the optimized mol-

ecules using AutoDock Vina. For covalent docking, we used Meeko (for ligand prepara-

tion) and AutoDock GPU. As an amino acid of interest, we selected Methionine 104. Frag-

menstein was used to generate novel molecules based on the structure of the reference 

and lead compounds. For molecular dynamics, we used GROMACS 2024.1 with the AM-

BER force field for the receptor and OpenFF tools for ligand parameterization and SPC216 

water model for 10 ns with a 2 fs time step. To analyze the result, we used the python 

library MDAnalysis[6]. 

 

Figure 2. initial SMILE of human optimization. 

Part 3: Experimental Results 
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Phase 1 results from the generative AI-driven approach for De Novo Drug Design, 

included two models. Model 1, Molecular Design with Beam Search, was run 42 times. 

Each run generated four files, including a text file with 15 SMILES, producing the best 

results with reasonable similarity and sufficient diversity. Model 2, REINVENT4, gener-

ated 628 SMILES strings without fine-tuning, followed by a two-step fine-tuning run. Af-

ter transfer learning, 154 SMILES strings were generated. In Phase 2, Fragment-Based 

Drug Design also utilized generative AI, with Model 1, Molecular Design Using Beam 

Search, executed 16 times, each producing 15 SMILES strings, though with low similarity 

to the reference molecule. Model 2, REINVENT4 Implementation, focused on Lead SMILE 

exploration, generating 12 CSV files with a median output of 157 SMILES strings per run. 

These generated SMILES had high to reasonable similarity but lacked diversity (Appendix 

C). 

A notable molecule, “O=C(c1ccc2ccoc2c1)N1CCC (C(=O)N2CCCC2)CC1,” generated 

in Phase 1 using Model 1, was selected for further optimization. This molecule displayed 

simplicity yet enough similarity. Using AutoDock Vina, the reference molecule exhibited 

a minimum binding energy of −9.2 kcal/mol. The lead had a minimum binding energy of 

−8.2 kcal/mol, indicating the need for further optimization (Table 1). SMILE10 of the Hu-

man Optimization phase had the highest binding affinity, followed closely by other de-

rivatives (Table 2). 

Table 1. Reference and Lead docking results select covalent variants of SMILES 1 and SMILE 10 

were subjected to this process. Despite the limited number of variants tested, significant enhance-

ments in binding affinity were observed (Table 3). 

SMILE Mode Affinity (kcal/mol) Dist from (rmsd l.b.) 

Reference 
1 −9.2 0 

2 −9.2 1.264 

Lead 
1 −8.2 0 

2 −7.9 2.367 

Table 2. Human Optimization variants. 

SMILE Number Affinity (kcal/mol) 

SMILE 10 −8.788 

SMILE 29 −8.786 

SMILE 30 −8.763 

SMILE 8 −8.719 

Table 3. Binding Energies of Covalent Inhibitors. 

SMILE Warhead Variant Variant RMSD (kcal/mol) Log (kcal/mol) 

SMILE 1 
Benzene sulfonyl 

Fluoride 

1.4 −9.63 −15.15 

SMILE 10 1.3 −9.27 −16.83 

SMILE 1 1.1 −8.99 −15.78 

The data shows that the binding affinities for the first two variants surpassed those 

of the reference. The Fragmenstein algorithm facilitated the creation of structurally unique 

molecules, which were docked against the target protein using AutoDock Vina, resulting 

in highly promising binding affinities (Table 4). As a result, SMILE 13 from Step 1 exhib-

ited the lowest binding energy at −10.7 kcal/mol, outperforming the best results from the 

human optimization phase (−8.788 kcal/mol) which surpasses the reference’s lowest bind-

ing energy of −9.2 kcal/mol (Table 1). 
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Table 4. Fragmenestein docking results. 

STEP SMILE RMSD (kcal/mol) 

Step 1 
SMILE13  −10.7 

SMILE2 −9.4 

Step 2 
SMILE8  −9.3 

SMILE15 −9.2 

The molecular dynamics (MD) simulations were carried out on selected ligands to 

evaluate their dynamic behavior within the target binding sites, representing various 

stages of optimization. The chosen ligands included Human Optimization Ligand 1 Pose 

5, Ligand 2 Pose 18, and Ligand 10 Pose 2, Fragmenstein Ligand 2 Pose 12 Step 1, and 

Covalent Inhibitors Ligand 10 Variant 1.3 with a Benzenesulfonyl Fluoride warhead. 

These selections reflect a broad cross-section of optimization efforts, from human-driven 

refinements to algorithmic and covalent inhibitor design. The MD trajectory analysis pro-

vided insights into the stability and behavior of specific residues involved in ligand bind-

ing. Key residues analyzed included MET 104, ILE 119, GLU 120, ARG 102, and HOH 204: 

Ligand 10 BSF Variant 1.3: This covalent inhibitor demonstrated consistent hydrogen 

bonding with critical residues, particularly MET 104 and GLU 120, throughout the simu-

lation. The heatmap (Figure 4) visualizes these dynamics, showing stable interactions that 

reinforce the ligand’s strong binding affinity. 

Fragmenstein Ligand 2 Step 1: This ligand exhibited dynamic hydrogen bonding pat-

terns, particularly with residues ARG 102 and ILE 119. Despite some fluctuation, the 

heatmap indicates overall stable interactions, suggesting the ligand maintains effective 

binding within the active site over the course of the simulation. 

These results highlight the stability of both ligands in their respective binding pock-

ets, suggesting strong potential as inhibitors targeting SIK2/ SIK3. The Root Mean Square 

Deviation (RMSD) analysis offers insight into the stability of ligands within the binding 

pocket: 

SMILE 10 BSF Variant 1.3: Displayed relatively stable binding, with RMSD values stabi-

lizing around 0.225 nm (Figure 3). 

Fragmenstein Ligand 2 Step 1: Exhibited larger conformational changes with RMSD 

peaks around 0.45 nm, suggesting a more flexible binding mode. 

 

Figure 3. SMILE 10 BSF warhead variant 1.3 RMSD. 

The interaction energy analysis evaluated the energetic stability of the ligands: 

SMILE 10 BSF Variant 1.3: Exhibited fluctuations in interaction energy between 4650 

kJ/mol and 5000 kJ/mol, with a running average around 4850 kJ/mol, indicating stable 

binding. 

Fragmenstein Ligand 2 Step 1: Showed a wider range of energy fluctuations (4700–5050 

kJ/mol) but maintained an overall stable interaction, with the running average around 
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4850 kJ/mol. The interaction energy profiles of both ligands indicate generally stable in-

teractions with the target protein, despite some transient destabilization. 

In this final phase, extensive exploration of chemical space and molecular dynamics 

(MD) simulations focused on enhancing the stability and binding affinity of Ligand 10 

variant 1.3, a covalent inhibitor. A total of 78 variants were generated across two trials 

(Appendix C). Altering the grid box size in docking had a notable impact on results, as in 

variant “2-oh” which went from +349.35 to −9.67 kcal/mol. Seven variants were selected 

for further MD simulations. Among them, variants 5 and 48 demonstrated the best per-

formance (Table 5)(Figure 6). 

However, neither surpassed the parent ligand -Ligand 10 variant 1.3- in stability and 

binding interactions: 

Variant 48: intermittent hydrogen bonding, with RMSD values stabilizing around 0.2 nm 

Variant 5: Displayed better hydrogen bond stability. RMSD fluctuated more, reaching 0.6 

nm (Figure 5). 

 

Figure 4. Heatmap H-Bond interactions Ligand 10 BSF Variant 1.3. 

 

Figure 5. Heat map of variant 5 h-bond interaction. 

 

Figure 6. illustrates the structure of variant 48. 
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Table 5. top-performing variants of Ligand 10 V 1.3. 

Trial Variant 
Binding Energy 

(kcal/mol) 
SMILE 

1 18 −10.42 
CCSCS(=O)(=O)c1cccc(N(c2cnc(C(=O)c3ccc4cc(O)

oc4c3)nc2F)C@HN2CCCC2)c1 

1 5 −9.95 

CCCSCS(=O)(=O)c1cccc(N(CC(=O)N2C[C@H]3C

OC[C@H]3C2)c2cnc(C(=O) 

c3ccc4cc(O)oc4c3)nc2F)c1 

1 44 −10.39 

CCSCS(=O)(=O)c1cccc(N(CC(=O)N2C[C@H]3CO

C[C@H]3C2)c2cnc(C(=O)c3ccc4cc(N5CCCC5)oc4

c3)nc2F)c1 

1 48 −10.79 
CCSCS(=O)(=O)c1cccc(N(c2cnc(C(=O)c3ccc4cc(O)

oc4c3)nc2F)C@@HC2=CC=C2)c1 

Variant 48 achieved a binding energy of −10.79 kcal/mol, which was a significant im-

provement compared to the reference and initial lead compounds. Optimization efforts 

extended to other covalent inhibitors, with changes to the bonding of the BSF warhead to 

Ligand 1 variants. Ligand 1 variant 1.4 new 2 achieving a binding energy of −10.17 

kcal/mol.MD simulations revealed the following (Table 6): 

Ligand 1 Variant 1.1 New: Displayed intermittent hydrogen bonding with residues, with 

RMSD values fluctuating between 0.22 nm and 0.3 nm. 

Ligand 1 Variant 1.4: Demonstrated significant H-bond stability. RMSD stabilizing 0.22 

nm. 

Ligand 1 Variant 1.4 New 2: stable hydrogen bonding, with RMSD stabilizing around 0.25 

nm. 

Table 6. top-performing variants of covalent inhibitors. 

Ligand 
RMSD 

(kcal/mol) 
SMILE 

Ligand 1 variant 

1.4 new 2 
−10.17 

CCSC=S(=O)(ON(CC(=O)N1CCCC1)c4cnc(C(=O)c3ccc2

cc[nH]c2c3)nc4)c5ccccc5 

Ligand 10 

variant 1.3 new 
−9.95 

CCSC=S(=O)(ON(CC(=O)N2C[C@@H]1COC[C@@H]1C

2)c5cnc(C(=O)c4ccc3ccoc3c4)nc5)c6ccccc6 

Ligand 10 

variant 1.3 new 

2 

−10.14 
CCS(C)=S(=O)(ON(CC(=O)N2C[C@H]1COC[C@H]1C2)

c5cnc(C(=O)c4ccc3ccoc3c4)nc5)c6ccccc6 

Part 4: Conclusions 

This research illustrates the power of combining computational methods with human 

expertise to design potent inhibitors targeting SIK2/3 kinases. The optimized lead com-

pounds demonstrated promising interactions with the protein targets, with stable binding 

profiles and consistent hydrogen bonding. These findings pave the way for future valida-

tion in vitro and in vivo, with the goal of developing new therapeutic drugs. 
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Appendix A 

Appendix A: National Center for Biotechnology Information. (n.d.). PubChem Data-

base. PubChem. https://pubchem.ncbi.nlm.nih.gov. 

Appendix B 

Supplementary computational notebooks. (n.d.). GitHub. https://github.com/Ed-

dieJosef/De_novo_design_of_sik2_sik3_inhibitors/tree/main/Notebooks. 

Appendix C 

Supplementary data files. (n.d.). Google Drive. https://drive.google.com/drive/fold-

ers/1OaXKp3LlCEb0P6aiJI5Ao1TMmHlPpCol. 

Appendix D 

Rashed, E.Y.E. (2024). Integrated Computational Approach to Rational Drug Design 

Targeting SIK2/3: From Theory to Practice. https://drive.google.com/file/d/1-

uCXCF0vj1tVx-_PkQbDpOcKx-l6ozIe/view. 
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