

# A robust and versatile computational peptide design pipeline to inform wet-lab experiments

Vikram K. Mulligan, Ph.D. Research Scientist, Biomolecular Design Group Center for Computational Biology Flatiron Institute Monday, 16 December 2024

## Outline

- 1. Peptide and protein drug design on classical computers.
- 2. Enhancing peptide and protein drug design with quantum chemistry calculations (on classical computers).
- 3. Enhancing peptide and protein drug design with quantum computers

## What do we mean by biomolecule "design"?



OpenStax College, CC BY 3.0 < https://creativecommons.org/licenses/by/3.0>, via Wikimedia Commons

## What do we mean by biomolecule "design"?



OpenStax College, CC BY 3.0 < https://creativecommons.org/licenses/by/3.0>, via Wikimedia Commons

## **Conformational entropy: The Achilles heel of macrocycles?**



## Pipeline for designing rigidly-folded peptide drugs



## **Classical peptide macrocycle design with the Rosetta software suite**



From Mulligan VK. (2022) "Computational methods for peptide macrocycle drug design." Chapter in *Peptide Therapeutics: Fundamentals of Design, Development, and Delivery*, Jois S., ed. Berlin, Germany: Springer. 2022. DOI: 10.1007/978-3-031-04544-8\_3.

## The rotamer optimization (design) problem



From Mulligan VK and Hosseinzadeh P. (2022) "Computational Design of Peptide-Based Binders to Therapeutic Targets." Chapter in *Approaching the Next Inflection in Peptide Therapeutics: Attaining Cell Permeability and Oral Bioavailability*, Ghodge S. V. *et al.*, eds. Washington DC: American Chemical Society.

## The rotamer optimization (design) problem



From Mulligan VK and Hosseinzadeh P. (2022) "Computational Design of Peptide-Based Binders to Therapeutic Targets." Chapter in *Approaching the Next Inflection in Peptide Therapeutics: Attaining Cell Permeability and Oral Bioavailability*, Ghodge S. V. *et al.*, eds. Washington DC: American Chemical Society.

## Pipeline for designing rigidly-folded peptide drugs



# Validating peptide designs with large-scale conformational sampling (Rosetta's simple\_cycpep\_predict application)



From Bhardwaj, Mulligan, Bahl et al. (2016) Nature 538(7625):329-35.

## The toolkits: The Rosetta software suite



- Rosetta is protein modelling software that has been generalized for more exotic macromolecules.
- The software is free for academics, nonprofits, and governments, and is licenced for a fee for commercial use.
- Originally started in David Baker's lab, Rosetta is now developed and maintained by more than 70 labs in many countries.

## Synthetic peptides designed to fold into rigid structures with the Rosetta software suite



From Bhardwaj, Mulligan, Bahl *et al.* (2016) *Nature* 538(7625):329-35; Hosseinzadeh, Bhardwaj, Mulligan *et al.* (2017). *Science* 358(6369):1461-6; Dang, Wu, Mulligan *et al.* (2017). *Proc Natl Acad Sci USA* 114(41):10852-7.



From Mulligan, Kang, Sawaya *et al.* (2021.) Computational design of mixed chirality peptide macrocycles with internal symmetry. *Protein Sci.* 29(12):2433-45. DOI: 10.1002/pro.3974.

#### **Computational design** X-ray crystal structure b Phe70 HL a Glu152 D-Arg1 Glu152 **HL** L-Glu8 L-Glu8 L-Leu3 Asp22 Met67 L-Leu3 D-Arg2 Phe70 Val73 D-Ara L-Pro7 L-lle6 L-Pro7 \_-lle6 Val73 L-Pro5 L-Pro5

From Mulligan *et al.* (2021). Computationally-designed peptide macrocycle inhibitors of New Delhi metallo-β-lactamase 1. *Proc Natl Acad Sci USA* 118(12):e2012800118. DOI: 10.1073/pnas.2012800118.

## A designed inhibitor of the New Delhi metallo-β-lactamase 1 (NDM-1)

## A designed inhibitor of the New Delhi metallo- $\beta$ -lactamase 1 (NDM-1)



From Mulligan *et al.* (2021). Computationally-designed peptide macrocycle inhibitors of New Delhi metallo-β-lactamase 1. *Proc Natl Acad Sci USA* 118(12):e2012800118. DOI: 10.1073/pnas.2012800118.

## **Simulations predict success in experiments**



From Mulligan *et al.* (2021). Computationally-designed peptide macrocycle inhibitors of New Delhi metallo-β-lactamase 1. *Proc Natl Acad Sci USA* 118(12):e2012800118. DOI: 10.1073/pnas.2012800118.

## Outline

- 1. Peptide and protein drug design on classical computers.
- 2. Enhancing peptide and protein drug design with quantum chemistry calculations (on classical computers).
- 3. Enhancing peptide and protein drug design with quantum computers

## **RosettaQM-based prediction of the structure of cyclosporine A in organic solvent**

#### **A** Traditional macrocycle conformational sampling:



With Benjamin Brown, P. Douglas Renfrew, Chris Jurich, Nancy Hernandez, and Bargeen Turzo.

## **Improving Accuracy and Generality with QM Energy Calculations**



With Benjamin Brown, P. Douglas Renfrew, Chris Jurich, Nancy Hernandez, and Bargeen Turzo.

### **Prediction of the Ramachandran map: RosettaQM-based parameterization of noncanonical force fields**



## Outline

- 1. Peptide and protein drug design on classical computers.
- 2. Enhancing peptide and protein drug design with quantum chemistry calculations (on classical computers).
- 3. Enhancing peptide and protein drug design with quantum computers

## **Revisiting the rotamer optimization (design) problem**



| B) | $E = \sum_{i=1}^{N} \alpha_{i} + \sum_{j=1}^{N-1} \sum_{k=2}^{N} \beta_{jk}$ |
|----|------------------------------------------------------------------------------|
|    |                                                                              |

old N - Number of designable positions

 $lpha_i$  - Internal energy of selected rotamer at position *i* 

 $eta_{ik}$ - Interaction energy of selected rotamers at positions *j* and *k* 

| ingle rotamer<br>iternal energy |            |            |  | Rotamer pair<br>interaction energy |     |            |            |             |                   |     |
|---------------------------------|------------|------------|--|------------------------------------|-----|------------|------------|-------------|-------------------|-----|
|                                 | 1-1<br>1-2 | 5.2<br>3.3 |  |                                    | 2-1 | Sec<br>2-2 | ond<br>2-3 | rota<br>3-1 | mer<br><u>3-2</u> | 3-: |
|                                 | 1-3        | 7.1        |  | 1                                  | 5.3 | 1.6        | 0.7        | 7.9         | 4.3               | 4.  |
| D                               | 2-1        | 2.1        |  | er<br>1-2                          | 5.8 | 4.8        | 2.3        | 1.3         | 5.3               | 5.8 |
| Vola                            | 2-2        | 6.8        |  | 1-3                                | 3.1 | 3.5        | 3.7        | 1.4         | 1.3               | 1.1 |
|                                 | 2-5        | 3.1        |  | st rc<br>2-1                       |     |            |            | 3.0         | 3.1               | 2.9 |
|                                 | 3-2        | 3.5        |  | Pir<br>2-2                         |     |            |            | 3.0         | 3.6               | 1.  |
|                                 | 3-3        | 1.5        |  | 2-3                                |     |            |            | 2.5         | 4.1               | 0.  |

## The D-Wave Advantage adiabatic quantum annealer



- The D-Wave Advantage offers about 5,000 spareselyconnected physical qubits. Each is connected to 15 others. <u>This can emulate 177 fully-connected virtual</u> <u>qubits.</u>
- The user provides <u>inputs</u> by setting single-qubit biases  $(h_i)$  for each qubit and two-qubit couplings  $(J_{i,j})$  for each pair of qubits.
- The total energy of a given state of the computer is:

$$E = \sum_{i=1}^{Q} q_i h_i + \sum_{i=2}^{Q} \sum_{j=1}^{i-1} q_i q_j J_{i,j}$$

In the above, Q is the number of qubits, and q<sub>i</sub> and q<sub>j</sub> are the value (0 or 1) of the i<sup>th</sup> and j<sup>th</sup> qubit (defining the *state*). The annealing process returns as <u>output</u> values q<sub>i</sub> for all qubits such that E is a minimum.

## **Designing peptides using a quantum annealer: QPacker**



In collaboration with Hans Melo, CEO, Menten AI

In collaboration with Brian Weitzner, Principal Scientist, Outpace Bio

|                                                                                                                                                                                                                                                                                                                                                          | Amino acid 3<br>(4 rotamers)                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Amino acid 2<br>(8 rotamers)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Amino acid 1<br>(4 rotamers)                                                                                                                          |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>Inter-amino acid qubit couplings<br/>are propotional to two-body<br/>rotamer pair energies.</li> <li>Single-qubit biases are<br/>proportional to one-body rotamer<br/>energies.</li> <li>Very positive couplings between<br/>qubits for the same amino acid<br/>prohibit two rotamers from being<br/>selected for the same position.</li> </ul> |                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                       |
| Examples of valid states that correspond to possible solutions to the packing problem, each with a single selected rotamer.                                                                                                                                                                                                                              | Rotamer 1<br>① ① ① ①<br>Rotamer 3<br>① ① ① ①<br>Rotamer 4<br>① ① ① ① ① | <ul><li>(1)</li><li>(1)</li><li>(1)</li><li>(1)</li><li>(1)</li><li>(1)</li><li>(1)</li><li>(1)</li><li>(1)</li><li>(1)</li><li>(1)</li><li>(1)</li><li>(1)</li><li>(1)</li><li>(1)</li><li>(1)</li><li>(1)</li><li>(1)</li><li>(1)</li><li>(1)</li><li>(1)</li><li>(1)</li><li>(1)</li><li>(1)</li><li>(1)</li><li>(1)</li><li>(1)</li><li>(1)</li><li>(1)</li><li>(1)</li><li>(1)</li><li>(1)</li><li>(1)</li><li>(1)</li><li>(1)</li><li>(1)</li><li>(1)</li><li>(1)</li><li>(1)</li><li>(1)</li><li>(1)</li><li>(1)</li><li>(1)</li><li>(1)</li><li>(1)</li><li>(1)</li><li>(1)</li><li>(1)</li><li>(1)</li><li>(1)</li><li>(1)</li><li>(1)</li><li>(1)</li><li>(1)</li><li>(1)</li><li>(1)</li><li>(1)</li><li>(1)</li><li>(1)</li><li>(1)</li><li>(1)</li><li>(1)</li><li>(1)</li><li>(1)</li><li>(1)</li><li>(1)</li><li>(1)</li><li>(1)</li><li>(1)</li><li>(1)</li><li>(1)</li><li>(1)</li><li>(1)</li><li>(1)</li><li>(1)</li><li>(1)</li><li>(1)</li><li>(1)</li><li>(1)</li><li>(1)</li><li>(1)</li><li>(1)</li><li>(1)</li><li>(1)</li><li>(1)</li><li>(1)</li><li>(1)</li><li>(1)</li><li>(1)</li><li>(1)</li><li>(1)</li><li>(1)</li><li>(1)</li><li>(1)</li><li>(1)</li><li>(1)</li><li>(1)</li><li>(1)</li><li>(1)</li><li>(1)</li><li>(1)</li><li>(1)</li><li>(1)</li><li>(1)</li><li>(1)</li><li>(1)</li><li>(1)</li><li>(1)</li><li>(1)</li><li>(1)</li><li>(1)</li><li>(1)</li><li>(1)</li><li>(1)</li><li>(1)</li><li>(1)</li><li>(1)</li><li>(1)</li><li>(1)</li><li>(1)</li><li>(1)</li><li>(1)</li><li>(1)</li><li>(1)</li><li>(1)</li><li>(1)</li><li>(1)</li><li>(1)</li><li>(1)</li><li>(1)</li><li>(1)</li><li>(1)</li><li>(1)</li><li>(1)</li><li>(1)</li><li>(1)</li><li>(1)</li><li>(1)</li><li>(1)</li><li>(1)</li><li>(1)</li><li>(1)</li><li>(1)</li><li>(1)</li><li>(1)</li><li>(1)</li><li>(1)</li><li>(1)</li><li>(1)</li><li>(1)</li><li>(1)</li><li>(1)</li><li>(1)</li><li>(1)</li><li>(1)</li><li>(1)</li><li>(1)</li><li>(1)</li><li>(1)</li><li>(1)</li><li>(1)</li><li>(1)</li><li>(1)</li><li>(1)</li><li>(1)</li><li>(1)</li><li>(1)</li><li>(1)</li><li>(1)</li><li>(1)</li><l< td=""><td>Rotamer 6         (1)       (1)       (1)         (1)       (1)       (1)       (1)         (1)       (1)       (1)       (1)         (1)       (1)       (1)       (1)         (1)       (1)       (1)       (1)         (1)       (1)       (1)       (1)         (1)       (1)       (1)       (1)         (1)       (1)       (1)       (1)         (1)       (1)       (1)       (1)         (1)       (1)       (1)       (1)         (1)       (1)       (1)       (1)         (1)       (1)       (1)       (1)         (1)       (1)       (1)       (1)         (1)       (1)       (1)       (1)         (1)       (1)       (1)       (1)         (1)       (1)       (1)       (1)         (1)       (1)       (1)       (1)         (2)       (1)       (1)       (1)         (2)       (1)       (1)       (1)         (2)       (1)       (1)       (1)         (2)       (1)       (1)       (1)</td><td>Rotamer 2         (1)       (1)       (1)         Rotamer 1       (1)       (1)         (1)       (1)       (1)         Rotamer 4       (1)       (1)</td></l<></ul> | Rotamer 6         (1)       (1)       (1)         (1)       (1)       (1)       (1)         (1)       (1)       (1)       (1)         (1)       (1)       (1)       (1)         (1)       (1)       (1)       (1)         (1)       (1)       (1)       (1)         (1)       (1)       (1)       (1)         (1)       (1)       (1)       (1)         (1)       (1)       (1)       (1)         (1)       (1)       (1)       (1)         (1)       (1)       (1)       (1)         (1)       (1)       (1)       (1)         (1)       (1)       (1)       (1)         (1)       (1)       (1)       (1)         (1)       (1)       (1)       (1)         (1)       (1)       (1)       (1)         (1)       (1)       (1)       (1)         (2)       (1)       (1)       (1)         (2)       (1)       (1)       (1)         (2)       (1)       (1)       (1)         (2)       (1)       (1)       (1) | Rotamer 2         (1)       (1)       (1)         Rotamer 1       (1)       (1)         (1)       (1)       (1)         Rotamer 4       (1)       (1) |
| Examples of prohibited (nonsen-<br>sical) states that are invalid<br>solutions to the packing problem.<br>Since more than one rotamer is<br>selected, these have no interpre-<br>tation.                                                                                                                                                                 |                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                       |

Described in Mulligan VK, Melo H, Merritt HI *et al.* (2019) Designing peptides on a quantum computer. *bioRxiv* preprint. DOI: 10.1101/752485

### **Designing heterochiral helical bundles with QPacker and the D-Wave 2000Q**





With Michael Sawaya, Todd Yeates, Parmjit Arora, Haley Irene Merritt, and Hans Melo.

# Self-assembling peptides designed with QPacker, with structures confirmed experimentally by x-ray crystallography





With Michael Sawaya, Todd Yeates, Parmjit Arora, Haley Irene Merritt, and Hans Melo.

# **QPacker-B:** Compressing problems to use *N* log<sub>2</sub> *D* qubits





Tristan Zaborniak, U. Victoria

## Full proteins designed on the D-Wave Advantage 6.4 Quantum Annealer

Top7 (classically designed in 2003)

First quantum-designed protein (15 QPU-seconds, Nov. 2024)

Second quantum-designed protein (15 QPU-seconds, Nov. 2024)







Tristan Zaborniak, U. Victoria





## Making enhanced classical and quantum peptide design available for everyone: The Masala software library



- Masala is a free and open-source successor to Rosetta under development at the Flatiron institute.
- It is structured to take full advantage of modern massively-parallel CPU and GPU hardware.
- It has a versatile plugin architecture permitting easy extensibility. Our QPU plugin permits design on quantum computers.
- It is intended to be used as standalone software *or* as a library in other projects. (Rosetta, for instance, can link Masala for high-efficiency design calculations.)
- To be released shortly.





P. Douglas Renfrew, CCB

Noora Azadvari, U. Oregon





Qiyao Zhu, CCB

S. M. Bargeen Alam Turzo, CCB



Tristan Zaborniak, U. Victoria

## Acknowledgements

Rosetta senior developers:

- Andrew Leaver-Fay
- Sergey Lyskov
- Julia Koehler-Leman
- P. Douglas Renfrew
- Andrew M. Watkins
- Jason Labonte
- Jared Adolf-Bryfogle
- Steven M. Lewis
- Rocco Moretti

Biomolecular Design Group:

- P. Douglas Renfrew
- Bargeen Turzo
- Qiyao Zhu

Interns and Visiting Scholars:

- Ekaterina Maximova
- Tristan Zaborniak
- Noora Azadvari
- Andrew Powers
- Allon Goldberg
- Rutika Patel

RosettaQM collaborators:

- Benjamin Brown
- Chris Jurich



## **Further reading**



## Peptide Therapeutics

Fundamentals of Design, Development, and Delivery

🤊 aaps'

🖄 Springer

#### ACS SYMPOSIUM SERIES

APPROACHING THE NEXT INFLECTION IN PEPTIDE THERAPEUTICS ATTAINING CELL PERMEABILITY AND ORAL BIOAVAILABILITY



GHODGE, BISWAS & GOLOSOV

ACS Publication

V.K. Mulligan, P. Hosseinzadeh. Computational Design of Peptide-Based Binders to Therapeutic Targets. Chapter in: S.V. Ghodge, K. Biswas, A.A. Golosov (Eds.), *Approaching the Next Inflection in Peptide Therapeutics: Attaining Cell Permeability and Oral Bioavailability*, American Chemical Society, Washington, DC, 2022: pp. 55–102. <u>https://doi.org/10.1021/bk-2022-</u> 1417.ch003.

V.K. Mulligan. Computational

York, 2022: pp. 79–161.

04544-8 3.

Methods for Peptide Macrocycle Drug

Peptide Therapeutics: Fundamentals of

Springer International Publishing, New

Design. Chapter in: S.D. Jois (Ed.),

Design, Development, and Delivery,

https://doi.org/10.1007/978-3-031-

Methods In Malexalar Biology 2592 Alexandra R. Lucas Editor

#### Chemokine-Glycosaminoglycan Interactions

**Methods and Protocols** 

🔆 Humana Press

J. Dodd-O, A.M. Acevedo-Jake, A.-R. Azizogli, V.K. Mulligan, V.A. Kumar, *How to Design Peptides*, Methods Mol Biol 2597 (2023) 187–216. <u>https://doi.org/10.1007/978-1-0716-</u> 2835-5\_15.

Or e-mail us: the Biomolecular Design Group, in the Flatiron Institute's Center for Computational Biology, is always looking for experimental collaborators.

> vmulligan@flatironinstitute.org pdrenfrew@flatironinstitute.org



#### **Prediction of the Ramachandran map: RosettaQM-based production of better force fields**



Chakrabartty DG of helix formation (kcal/mol)

Comparison to Chakrabartty, Kortemme, and Baldwin. (1994). *Protein Sci.* 3(5)843-52. DOI: 10.1002/pro.5560030514.

## How many qubits *should* the QPacker use?

- A packing problem with *N* designable positions and *D* rotamers per position has *D*<sup>*N*</sup> possible solutions.
- A register of Q qubits can exist in a superposition of  $2^Q$  states ( $2^Q$  bitstrings). If we use qubits efficiently, then each bitstring will map to a unique solution.
- Let  $2^Q = D^N$ . Then  $Q = N \log_2 D$ .
- But we're using *ND* qubits, not  $N \log_2 D$ . One-hot encoding of rotamer selections is very inefficient. Can we do better?

## **QPacker-B:** A classical approximation to compress one-body and two-body energies into fewer qubits (16-qubit example)



selection



Tristan Zaborniak