

A robust and versatile computational peptide design pipeline to inform wet-lab experiments

Vikram K. Mulligan, Ph.D. Research Scientist, Biomolecular Design Group Center for Computational Biology Flatiron Institute Monday, 16 December 2024

Outline

- 1. Peptide and protein drug design on classical computers.
- 2. Enhancing peptide and protein drug design with quantum chemistry calculations (on classical computers).
- 3. Enhancing peptide and protein drug design with quantum computers

What do we mean by biomolecule "design"?

OpenStax College, CC BY 3.0 <https://creativecommons.org/licenses/by/3.0>, via Wikimedia Commons

What do we mean by biomolecule "design"?

OpenStax College, CC BY 3.0 <https://creativecommons.org/licenses/by/3.0>, via Wikimedia Commons

Conformational entropy: The Achilles heel of macrocycles?

Pipeline for designing rigidly-folded peptide drugs

Classical peptide macrocycle design with the Rosetta software suite

From Mulligan VK. (2022) "Computational methods for peptide macrocycle drug design." Chapter in *Peptide Therapeutics: Fundamentals of Design, Development, and Delivery*, Jois S., ed. Berlin, Germany: Springer. 2022. DOI: 10.1007/978-3-031-04544-8_3.

The rotamer optimization (design) problem

From Mulligan VK and Hosseinzadeh P. (2022) "Computational Design of Peptide-Based Binders to Therapeutic Targets." Chapter in *Approaching the Next Inflection in Peptide Therapeutics: Attaining Cell Permeability and Oral Bioavailability*, Ghodge S. V. *et al.*, eds. Washington DC: American Chemical Society.

The rotamer optimization (design) problem

From Mulligan VK and Hosseinzadeh P. (2022) "Computational Design of Peptide-Based Binders to Therapeutic Targets." Chapter in *Approaching the Next Inflection in Peptide Therapeutics: Attaining Cell Permeability and Oral Bioavailability*, Ghodge S. V. *et al.*, eds. Washington DC: American Chemical Society.

Pipeline for designing rigidly-folded peptide drugs

Validating peptide designs with large-scale conformational sampling (Rosetta's simple_cycpep_predict application)

From Bhardwaj, Mulligan, Bahl *et al*. (2016) *Nature* 538(7625):329-35.

The toolkits: The Rosetta software suite

- Rosetta is protein modelling software that has been generalized for more exotic macromolecules.
- The software is free for academics, nonprofits, and governments, and is licenced for a fee for commercial use.
- Originally started in David Baker's lab, Rosetta is now developed and maintained by more than 70 labs in many countries.

Synthetic peptides designed to fold into rigid structures with the Rosetta software suite

From Bhardwaj, Mulligan, Bahl *et al*. (2016) *Nature* 538(7625):329-35; Hosseinzadeh, Bhardwaj, Mulligan *et al*. (2017). *Science* 358(6369):1461-6; Dang, Wu, Mulligan *et al*. (2017). *Proc Natl Acad Sci USA 114(41):10852-7*.

From Mulligan, Kang, Sawaya *et al*. (2021.) Computational design of mixed chirality peptide macrocycles with internal symmetry. *Protein Sci.* 29(12):2433-45. DOI: 10.1002/pro.3974.

A designed inhibitor of the New Delhi metallo-β-lactamase 1 (NDM-1)Computational design Phe70 HL **b Glu152 X-ray crystal structure** a D-Arg1 **Glu152 HL** L-Glu8 L-Glu8 L-Leu3 Asp22 Met67 L-Leu3 D-Arg2 Phe70 Val73 D-Ara L-Pro7 L-Ile6 L-Pro7 $-$ Ile₆ Val73 L-Pro5 L-Pro5

From Mulligan *et al*. (2021). Computationally-designed peptide macrocycle inhibitors of New Delhi metallo-β-lactamase 1. *Proc Natl Acad Sci USA* 118(12):e2012800118. DOI: 10.1073/pnas.2012800118.

A designed inhibitor of the New Delhi metallo-β-lactamase 1 (NDM-1)

From Mulligan *et al*. (2021). Computationally-designed peptide macrocycle inhibitors of New Delhi metallo-β-lactamase 1. *Proc Natl Acad Sci USA* 118(12):e2012800118. DOI: 10.1073/pnas.2012800118.

Simulations predict success in experiments

From Mulligan *et al*. (2021). Computationally-designed peptide macrocycle inhibitors of New Delhi metallo-β-lactamase 1. *Proc Natl Acad Sci USA* 118(12):e2012800118. DOI: 10.1073/pnas.2012800118.

Outline

- 1. Peptide and protein drug design on classical computers.
- 2. Enhancing peptide and protein drug design with quantum chemistry calculations (on classical computers).
- 3. Enhancing peptide and protein drug design with quantum computers

RosettaQM-based prediction of the structure of cyclosporine A in organic solvent

A Traditional macrocycle conformational sampling:

With Benjamin Brown, P. Douglas Renfrew, Chris Jurich, Nancy Hernandez, and Bargeen Turzo.

Improving Accuracy and Generality with QM Energy Calculations

With Benjamin Brown, P. Douglas Renfrew, Chris Jurich, Nancy Hernandez, and Bargeen Turzo.

Prediction of the Ramachandran map: RosettaQM-based parameterization of noncanonical force fields

Outline

- 1. Peptide and protein drug design on classical computers.
- 2. Enhancing peptide and protein drug design with quantum chemistry calculations (on classical computers).
- 3. Enhancing peptide and protein drug design with quantum computers

Revisiting the rotamer optimization (design) problem

 N - Number of designable positions

 α_i - Internal energy of selected rotamer at position i

 $\boldsymbol{\beta}_{ik}$ - Interaction energy of selected rotamers at positions j and k

The D-Wave Advantage adiabatic quantum annealer

- The D-Wave Advantage offers about 5,000 spareselyconnected physical qubits. Each is connected to 15 others. This can emulate 177 fully-connected virtual qubits.
- The user provides inputs by setting single-qubit biases (h_i) for each qubit and two-qubit couplings $(J_{i,j})$ for each pair of qubits.
- The total energy of a given state of the computer is:

$$
E = \sum_{i=1}^{Q} q_i h_i + \sum_{i=2}^{Q} \sum_{j=1}^{i-1} q_i q_j J_{i,j}
$$

• In the above, Q is the number of qubits, and q_i and q_j are the value (0 or 1) of the ith and jth qubit (defining the *state*). The annealing process returns as <u>output</u> values q_i for all qubits such that *E* is a minimum.

Designing peptides using a quantum annealer: QPacker

In collaboration with Hans Melo, CEO, Menten AI

In collaboration with Brian Weitzner, Principal Scientist, Outpace Bio

Described in Mulligan VK, Melo H, Merritt HI *et al*. (2019) Designing peptides on a quantum computer. *bioRxiv* preprint. DOI: 10.1101/752485

Designing heterochiral helical bundles with QPacker and the D-Wave 2000Q

With Michael Sawaya, Todd Yeates, Parmjit Arora, Haley Irene Merritt, and Hans Melo.

Self-assembling peptides designed with QPacker, with structures confirmed experimentally by x-ray crystallography

With Michael Sawaya, Todd Yeates, Parmjit Arora, Haley Irene Merritt, and Hans Melo.

QPacker-B: Compressing problems to use *N* **log₂** *D* **qubits**

Tristan Zaborniak, U. Victoria

Full proteins designed on the D-Wave Advantage 6.4 Quantum Annealer

Top7 (classically designed in 2003) First quantum-designed protein

(15 QPU-seconds, Nov. 2024)

Second quantum-designed protein (15 QPU-seconds, Nov. 2024)

Tristan Zaborniak, U. Victoria

Making enhanced classical and quantum peptide design available for everyone: The Masala software library

- Masala is a free and open-source successor to Rosetta under development at the Flatiron institute.
- It is structured to take full advantage of modern massively-parallel CPU and GPU hardware.
- It has a versatile plugin architecture permitting easy extensibility. Our QPU plugin permits design on quantum computers.
- It is intended to be used as standalone software *or* as a library in other projects. (Rosetta, for instance, can link Masala for high-efficiency design calculations.)
- *To be released shortly.*

P. Douglas Renfrew, CCB

Noora Azadvari, U. Oregon

S. M. Bargeen Alam Turzo, CCB Qiyao Zhu, CCB

Tristan Zaborniak, U. Victoria

Acknowledgements

Rosetta senior developers:

- Andrew Leaver-Fay
- Sergey Lyskov
- Julia Koehler-Leman
- **P. Douglas Renfrew**
- Andrew M. Watkins
- Jason Labonte
- Jared Adolf-Bryfogle
- Steven M. Lewis
- Rocco Moretti

Biomolecular Design Group:

- **P. Douglas Renfrew**
- Bargeen Turzo
- Qiyao Zhu

Interns and Visiting Scholars:

- Ekaterina Maximova
- **Tristan Zaborniak**
- Noora Azadvari
- Andrew Powers
- Allon Goldberg
- Rutika Patel

RosettaQM collaborators:

• **Benjamin Brown**

• Chris Jurich

Further reading

Peptide **Therapeutics**

Fundamentals of Design, Development, and Delivery

b aaps

 \bigcirc Springer

ACS SYMPOSIUM SERIES

APPROACHING THE NEXT INFLECTION IN PEPTIDE THERAPEUTICS ATTAINING CELL PERMEABILITY AND ORAL BIOAVAILABILITY

GHODGE, BISWAS & GOLOSOV

A ACS Publication

V.K. Mulligan, P. Hosseinzadeh. Computational Design of Peptide-Based Binders to Therapeutic Targets. Chapter in: S.V. Ghodge, K. Biswas, A.A. Golosov (Eds.), *Approaching the Next Inflection in Peptide Therapeutics: Attaining Cell Permeability and Oral Bioavailability*, American Chemical Society, Washington, DC, 2022: pp. 55–102. [https://doi.org/10.1021/bk-2022-](https://doi.org/10.1021/bk-2022-1417.ch003) [1417.ch003.](https://doi.org/10.1021/bk-2022-1417.ch003)

V.K. Mulligan. Computational

York, 2022: pp. 79–161.

[04544-8_3.](https://doi.org/10.1007/978-3-031-04544-8_3)

Methods for Peptide Macrocycle Drug Design. Chapter in: S.D. Jois (Ed.),

Peptide Therapeutics: Fundamentals of

Design, Development, and Delivery, Springer International Publishing, New

[https://doi.org/10.1007/978-3-031-](https://doi.org/10.1007/978-3-031-04544-8_3)

Springer Protocols Alexandra R. Lucas **Editor**

Chemokine-Glycosaminoglycan **Interactions**

Methods and Protocols

类 Humana Press

J. Dodd-O, A.M. Acevedo-Jake, A.-R. Azizogli, V.K. Mulligan, V.A. Kumar, *How to Design Peptides*, Methods Mol Biol 2597 (2023) 187–216. [https://doi.org/10.1007/978-1-0716-](https://doi.org/10.1007/978-1-0716-2835-5_15) [2835-5_15.](https://doi.org/10.1007/978-1-0716-2835-5_15)

Or e-mail us: the Biomolecular Design Group, in the Flatiron Institute's Center for Computational Biology, is always looking for experimental collaborators.

> vmulligan@flatironinstitute.org pdrenfrew@flatironinstitute.org

Prediction of the Ramachandran map: RosettaQM-based production of better force fields

Chakrabartty DG of helix formation (kcal/mol)

Comparison to Chakrabartty, Kortemme, and Baldwin. (1994). *Protein Sci.* 3(5)843-52. DOI: 10.1002/pro.5560030514.

How many qubits *should* **the QPacker use?**

- A packing problem with *N* designable positions and *D* rotamers per position has D^N possible solutions.
- A register of *Q* qubits can exist in a superposition of 2*^Q* states (2*^Q* bitstrings). If we use qubits efficiently, then each bitstring will map to a unique solution.
- Let $2^Q = D^N$. Then $Q = N \log_2 D$.
- But we're using *ND* qubits, not *N* log₂ *D*. One-hot encoding of rotamer selections is very inefficient. Can we do better?

QPacker-B: A classical approximation to compress one-body and two-body energies into fewer qubits (16-qubit example)

Tristan Zaborniak

Red points: duplicates (since *D* is not an exact power of 2). We want to prohibit these.

selection