Design and synthesis of helicoidal constrained peptides to inhibit the amyloid aggregation by stabilizing the monomer

Cécile Bousch^{1,2}, Margaryta Babych^{1,2}, Steve Bourgault^{1,2}

1 Chemistry Department, Université du Québec à Montréal, Qc. Canada

2 Quebec Network for research on protein function, Engineering and applications, PROTEO.

Objectives and rational design

<u>Hypothesis</u>: Stabilizing the monomer by targeting the helicoidal structure produces « off-pathway » intermediates

IAPP full length analogues were developed and showed inhibition of the aggregation processus

IAFF	KCINIA ICAIQ KLANF LVHJJ INNFUAILJJI NVUJINI P	()
c[Pra ⁹ ,AzK ¹³]IAPP	KCNTA TCAPraQ RLAZKNF LVHSS NNFGAILSST NVGSNTY	e 4.0×10 ⁶
c[Pra ¹³ ,AzK ¹⁷]IAPP	KCNTA TCATQ RLPraNF LAZKHSS NNFGAILSST NVGSNTY	80 3.0×10 ⁶
c[Pra ¹⁷ ,AzK ²¹]IAPP	KCNTA TCATQ RLANF LPraHSS AzKNFGAILSST NVGSNTY	OS OUTO
c[Pra ²⁰ ,AzK ²⁴]IAPP	KCNTA TCATQ RLANF LVHSPra NNFAzKAILSST NVGSNTY	
c[Pra ²⁴ ,AzK ²⁸]IAPP	KCNTA TCATQ RLANF LVHSS NNFPraAILAzKST NVGSNTY	L 1.0×10 ⁶
bis c[Pra ¹³ ,AzK ¹⁷] [Pra ²⁴ ,AzK ²⁸]IAPP	KCNTA TCATQ RLPraNFLAzKHSS NNFPraAILAzKST NVGSNTY	⊢ 0·

Objective :

Aim at identifying determine the smallest portion necessary to maintain amyloid inhibition of the helicoidal IAPP segment

Α

Methodology and results

1. Conception of the truncated stapled IAPP derivatives

2. Synthesis and side-chain to side-chain cyclisation

Staple formed between an intramolecular azide and an alkyne

DIPEA (10 eq.)

CuBr (1 eq.)

DMSO, 18h

2,6-lutidine (10 eq.)

Na ascorbate (1 eq.)

3. Secondary structure validation by circular dichroism

Determination of the secondary structure with circular dichroism showing α -helix conformations at t=0 min except for IAPP, which is in random coil

B

(A) Formation of the intramolecular triazole with click reaction

(B) Validation of the disappearance of the azide group with FTIR between before (red curve) and after (blue curve) the click reaction

4. Kinetics of aggregation

24

Time (h)

Conclusion and perspectives

Full length of IAPP is needed to inhibit the aggregation of IAPP by means of helical stabilization.

Hypothesis : the substitution of the amino acids in the sequence disturbs the recognition phenomenon.

 \triangleright As an alternative, diazapeptide will be tested as potential inhibitors.

> Understanding the aggregation mechanism of IAPP can give clues to understand other amyloid aggregation processes.

References

J. Am. Chem. Soc. 2024, 146, 37, 25513-25526 *Biochimica et Biophysica Acta* **2011**, 1808, 2337–2342 Nat Struct Mol Biol 2020, 27, 660–667 Journal of Biological Chemistry 2009, 284 (18), 11982 – 11991 Sci Rep 2017, 7, 44041 Bioconjugate Chem. 2018, 29, 517-527

