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Abstract: This study proposes a health monitoring system for snoring detection utilizing Tiny Ma-

chine Learning (TinyML) models, specifically designed for resource-constrained wearable Internet 

of Things (IoT) devices. This research addresses significant constraints associated with running Ma-

chine Learning models on IoT devices, such as latency, limited memory, and low computational 

resources. These parameters are essential for real-time monitoring in healthcare applications, where 

prompt response is critical. The research focuses on developing a TinyML model capable of identi-

fying specific audio patterns related to snoring during sleep. Experimental evaluations conducted 

in real-world sleep environments with the TinyML model deployed on resource-constrained wear-

able IoT devices. The evaluation results show that the proposed model achieves high accuracy while 

utilizing minimal computational resources and without introducing latency issues. The integration 

of Audio (Syntiant) and advanced audio preprocessing techniques, the proposed system improves 

the efficiency of the TinyML model on wearable devices. The quantized TinyML model achieved 

accuracy of 95.85% with a low latency of 48 ms, utilizing only 17.0 K RAM and 34.07 K flash memory 

for real-time snoring classification. This study highlights the benefits of practical deployment of 

TinyML model for snoring detection on resource-constrained wearable IoT devices, demonstrating 

that such models can operate effectively within the constraints of current wearable technology. 
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1. Introduction 

The studies conducted on human lives reveals that close relationships are very im-

portant for sustaining happiness more than money or anything else [1]. Snoring not only 

disrupts the snorer’s sleep but can also foster bitterness and resentment between couples. 

Studies have also shown that almost 30–40% humans are habitual to snoring [2]. When 

muscles around throat relax during sleep, it narrows the airway which results in vibration 

due to which snoring happen [3]. Snoring often related to symptom of a sleep disorder. It 

emphasizes the importance of detecting and addressing snoring to enhance persons’ qual-

ity of life. This study aims to build a TinyML (Tiny Machine Learning)-based device ded-

icated to the detect and alert when a person is snoring [4]. 

Building a snoring detection device has some challenges, ranging from technical hur-

dles to user-related considerations. The snoring patterns can also vary from person to 

person. Therefore, designing a device that can accurately captures and interprets different 

snoring voices is a big challenge. Environmental noise, such as ambient noise in the 

Citation: Malche, T.; Tharewal, S.; 

Maheshwary, P. A TinyML  

Approach to Real-Time Snoring  

Detection in Resource-Constrained 

Wearables Devices. Eng. Proc. 2024, 

6, x. https://doi.org/10.3390/xxxxx 

Academic Editor(s): Name 

Published: 26 November 2024 

 

Copyright: © 2024 by the authors. 

Submitted for possible open access 

publication under the terms and 

conditions of the Creative Commons 

Attribution (CC BY) license 

(https://creativecommons.org/license

s/by/4.0/). 



Eng. Proc. 2024, 6, x FOR PEER REVIEW 2 of 12 
 

 

bedroom or external disturbances can also impact accurate snore detection. To ensure the 

the snoring device is comfortable for users to wear during sleep is also a main challenge. 

Building a machine learning model for resource-constrained devices, such as wearable 

devices, is also a major issue. The size and complexity of machine learning models can 

also directly impact the storage limitation of such wearable devices. Achieving real-time 

inference on resource-constrained devices is also challenging audio signals has to be pro-

cessed for snoring detection. On the other hand, TinyML for building a wearable device 

for snore detection offers many benefits as follows: 

• TinyML models are specifically designed for resource-constrained environments. 

• TinyML models are optimized for real-time inference. It enables on-device inference 

and eliminates the need for continuous data transmission to external servers for anal-

ysis. 

• TinyML models ensures real-time response because of low latency. In the context of 

snore detection, this capability is critical for providing timely alerts. 

• TinyML models are characterized by their compact size, making it suitable for de-

ployment in wearable devices. 

2. Related Work 

The study in [5] presents a novel snore detection algorithm which uses convolutional 

recurrent neural networks. The model is evaluated on audio data of from 38 users while 

they are sleeping. The system uses microphone installed at different places and the algo-

rithm achieved high accuracy (95.3%) in detecting snore events, with 92.2% sensitivity and 

97.7% specificity. The performance of algorithm remained robust across different micro-

phone positions which indicate the reliability of the system for snore detection in different 

sleep environments. Another study in [6] focuses on the crucial need for a reliable snoring 

detection system for monitoring and diagnosing obstructive sleep apnea (OSA) to im-

prove the quality of life for those with the disorder. This research proposes a hybrid con-

volutional neural network (CNN) model for detecting snores. For OSA monitoring in real-

world situations, the model achieved an 89.3% average classification accuracy, 89.7% sen-

sitivity, and 88.5% specificity. The research in [7] discusses the health hazards associated 

with obstructive sleep apnea hypopnea syndrome (OSAHS) and suggests a novel strategy 

for monitoring and identification to avoid treatment delays. The system classifies snoring 

voices of normal individuals and those with OSAHS. Mel-frequency cepstral coefficients 

(MFCC) are used in the study, along with CNN and LSTM models for feature extraction. 

The method has the greatest accuracy rate of 87% for binary categorization of snoring 

data. The suggested approach can also estimate the severity of OSAHS using the deter-

mined AHI value, providing useful information for clinical diagnosis and therapy. In [8] 

authors discuss the challenges of detecting OSAHS by developing a snore detection sys-

tem that enables at-home screening. The study suggests an approach for utilizing the 

hardware limitation of smartphones. The developed system detects snoring and environ-

mental noises with using real-time snore detector (RTSD) for sleep sound recordings. The 

RTSD serves as a valuable standalone tool for analyzing quality of sleep.  

The research in [9] explores about snoring issue and highlight its impact on health. 

The research aimed to develop a deep learning model implemented as an Android 

smartphone app for snore detection. The app analyzes real-time audio captured by the 

on-device microphone and classifies snore and non-snore voice and noise with an accu-

racy of 98%. Authors in [10] discussed an efficient method for snoring detection to diag-

nose OSA and health complications related to it. The study employs a CNN to distinguish 

between snoring and non-snoring voices and noises based on audio inputs. The raw data 

is preprocessed using MFCC, and multi-scale features are extracted from the frequency 

domain using a multi-branch CNN (MBCNN). The developed model achieves a snoring 

detection accuracy of 99.5%. The research in [11] addresses the issue of poor sleep quality 

in modern society and proposed a method to detect snoring and coughing episodes 
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during sleep. The study discuss three stage method consisting of segmentation of nightly 

sound data into individual events, extraction of features from snoring and coughing epi-

sodes using Fourier Transform, and recognition of these events using Support Vector Ma-

chine (SVM) and Hidden Markov Model (HMM). Experimental results demonstrate the 

effectiveness of the method in accurately detecting snoring and coughing events. The 

study presented in [12] proposes a low-cost alternative to polysomnography (PSG) for 

detecting OSA. A repository of snoring audio recordings is processed using multi-thresh-

old endpoint detection and feature extraction to obtain distinctive information. Machine 

learning models are then trained to predict feature categories. A real-time system for an 

embedded device is developed to detect snoring and OSA. A multi-classification temporal 

convolutional network (TCN) is trained to distinguish between non-snoring, snoring 

noises, and OSA-related snoring. The model achieved a high detection accuracy of 96.7% 

for OSA-related snoring.  

Based on the analysis of the research review, it is concluded that there is a need for 

the development of an efficient, real-time wearable device and system capable of accu-

rately detecting snoring. The system should address the limitations of resource-con-

strained devices and eliminate the dependency on cloud servers for inferencing. By creat-

ing a wearable device that can accurately detect snoring in real-time without relying on 

external servers, the people with OSA can benefit from continuous monitoring and timely 

intervention.  

3. Methods 

3.1. System Design 

To detect snoring when a person is sleeping, a wearable device is designed using 

Arduino Nicla Voice [13]. The device contains built in microphone to receive snoring 

sound and provide input to TinyML model that was built. The main features of the device 

are given in Table 1: 

Table 1. Device Configuration. 

Microprocessor Syntiant® NDP120 Neural Decision Processor™ (NDP) 

Microcontroller nRF52832 64 MHz (Arm Cortex M4) 

Sensor Microphone IM69D130 

Power 3.7 V Li-po battery 

Memory 
512 KB Flash, 64 KB SRAM  

16 MB SPI Flash, 48 KB SRAM  

Connectivity Bluetooth® Low Energy (ANNA-B112) 

The device is powered by 3.7 V Li-po battery as illustrated in Figure 1. 

As shown in Figure 1, the device can be comfortable worn in the wrist by the user 

during sleep and is used to detect snore and send alert to user. The System architecture is 

shown in Figure 2. 
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Figure 1. Wearable Sensor Design. 

 

Figure 2. System Architecture. 

The system works by detecting the snore sound using wearable sensor. If the snoring 

is detected by TinyML model running on wearable device, it sends the signal to nearby 

gateway device which in turn generate an alarm. The gateway also stores the snore detec-

tion data with timestamp locally and further sends it to cloud server for permanent stor-

age and analysis. In this way the system not only detect and alert users for snoring but 

also keeps track of the historical data which may be shared to medical practitioners for 

further analysis and diagnosis. 
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3.2. Dataset 

The dataset consists of two distinct classes that are snoring and non-snoring. The 

snoring class has 1000 samples of snoring voices, each lasting for 1 s. This collection in-

cludes snoring voices of adult men and women, children. The data set contains snoring 

and non-snoring voices and noises with and without background. 

The non-snoring class consists of 500 samples of non-snoring voices and noises, each 

also lasting for 1 s. These samples contain varied background sounds. The dataset consists 

of 50 samples from each category of non-snoring voices and sounds. The dataset used for 

non-snoring sound consists of audio recordings from various categories, including door 

opening and closing, silence with motor vibrations, clock ticking, toilet flushing, vehicle 

sirens, rain and thunderstorms, streetcar sounds, human speech, and television news. 

These datasets were obtained from Kaggle [14]. Figure 3 provides a visual representation 

of the dataset used. 

 

Figure 3. Dataset for snoring and non-snoring sounds. 

3.3. Processing 

In this study, Audio Syntiant [15] processing is utilised to classify snoring from non-

snoring voices and noises. The Audio Syntiant is used to extract time and frequency in-

formation from signals. The Syntiant audio processing pipeline is a specialized version of 

Audio MFE, with additional steps for the Syntiant chip’s unique characteristics. Key pa-

rameters include frame length, frame stride, filter number, FFT length, low frequency, and 

high frequency, which define the spectrogram features extracted using Mel-filterbank en-

ergy. Pre-emphasis is applied with a specified coefficient. The chip-specific features ex-

tractor is chosen based on the particular Syntiant chip used, ensuring optimal feature gen-

eration for the given hardware. 

Syntiant’s feature extraction process begins with a pre-emphasis step to amplify 

high-frequency components. The audio signal is divided into overlapping segments, with 

the frame length and stride determining the size and spacing of these segments. These 

parameters influence the extracted speech features. Table 2 provides the specific values 

used for Audio Syntiant. 
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Table 2. Audio Syntiant Parameters. 

Log Mel filterbank energy features 

Frame length: 0.032 

Frame stride: 0.024 

Filter number: 40 

FFT length: 512 

Low frequency: 0 

High frequency: 0 

Preemphasis 

Coefficient: 0.96875 

Chip 

Features extractor: log-bin (NDP1 20/200) 

The Figure 4 shows the DSP results as Syntiant spectrogram of the Snoring sound 

and Figure 5 visualizes the features generated for snoring and non-snoring voices and 

noises. 

 

Figure 4. Syntiant spectrogram of the Snoring sound. 
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Figure 5. Generated Features for non-snoring and snoring sounds. 

3.4. Model Architecture 

The neural network architecture, as shown in Figure 6, is built using sequential 

model. The input to the network consists of a 2D array of 40 × 40 × 1 represents MFCC 

features. The first layer is 2D convolutional layer which has 8 filters of size 3 × 3. The filters 

are constrained using max-norm regularization with a maximum norm of 1. The ReLU 

activation function is used in this layer. After this a max pooling layer with a pool size 2 

× 2 and a stride 2 is applied. Another 2D convolutional layer having 8 filters of 3 × 3 size 

is applied. A ‘valid’ padding, max-norm constraint, and ReLU activation is added to cap-

ture more complex features in this layer. Another similar max pooling layer follows the 

second convolutional layer. A dropout layer with a rate of 0.25 is included after the pool-

ing layers to prevent overfitting. An average pooling layer with a dynamically determined 

pool size is used to aggregate features spatially before flattening. A reshape layer converts 

the 2D pooled feature maps into a 1D vector, preparing them for the fully connected lay-

ers. A fully connected layer having 16 neurons and ReLU activation is used, with L1 reg-

ularization to encourage sparsity in the learned weights. A second fully connected layer 

with 8 neurons and ReLU activation is added, also with L1 regularization and a dropout 

layer. The final fully connected layer has 2 neurons, representing the number of classes, 

with a softmax activation function to provide class probabilities. 
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Figure 6. Model Architecture. 

 

This architecture is designed to meet the specific requirements of the snore detection 

problem. For training the model, the 100 epochs, 0.0005 learning rate and 32 batch size 

was used. After training the model achieved the total accuracy of 96.6% with 0.11 loss. 

Finally, the TinyML model is quantized from float32 to int8 to fit in the requirements of 

low-resource device making it work efficiently on wearable devices. The Table 3 show 

confusion matrix for training dataset. 

 

Table 3. Confusion Matrix (Training Dataset). 

 Non-Snoring Snoring 

Non-Snoring 98.8% 1.2% 

Snoring 5.7% 94.3% 

F1 Scores 0.97 0.96 

The graph in Figure 7 shows that model has accurately identified snoring and non-

snoring voices and noises during training. The model architecture is shown in Figure 7. 
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Figure 7. Model Accuracy during Training for snoring 94.3% and non-snoring 98.8%. 

 

4. Results and Discussion 

The trained model is evaluated on the test dataset. The accuracy of the model as well 

as the memory it takes, and its processing speed are also tested on resource constrained 

IoT devices. The confusion matrix for test dataset is shown in Table 4. For non-snoring 

predictions, the model correctly classified 96.8% of non-snoring instances as non-snoring 

and incorrectly classified 1.1% of non-snoring instances as snoring. It has also classified 

2.1% of non-snoring instances as uncertain indicating tht model could not confidently 

classify the instance as either snoring or non-snoring. Similarly, the model correctly clas-

sified 96.4% of snoring instances as snoring and incorrectly classified 0.5% of snoring in-

stances as non-snoring. It also classified 3.1% of snoring instances as uncertain. F1 Scores 

are measures of accuracy of the model and the F1 scores for “Non-Snoring” and “Snoring” 

voices are 0.98, which indicate that the model achieved high accuracy in classifying both 

classes on new data. The graph in Figure 8 show the model performance on test dataset. 

Table 4. Confusion Matrix (Test Dataset). 

 Non-Snoring Snoring Uncertain 

Non-Snoring 96.8% 1.1% 2.1% 

Snoring 0.5% 96.4% 3.1% 

F1 Scores 0.98 0.98  
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Figure 8. Model performance on Test Dataset. 

The main objective of this research is to find the suitable model architecture that can 

be deployed in resource constrained environment of the target wearable device. This re-

quires analysing the hardware requirements of the target device and accordingly design-

ing and selecting the bet TinyML model to achieve maximum performance and accuracy. 

The analysis on input data, signal processing, and neural network structures have been 

conducted to build efficient model architecture as per the need of computing power and 

memory requirements of the device. The following architecture and configurations were 

used to deploy a TinyML model: 

• Dataset Category: voice events 

• Target Device: Cortex M4 

• Time per inference: 100 ms 

• Target RAM: 340 KB 

• Target ROM: 1024 KB 

After a thorough investigation the best model for the device is selected and the model 

is quantized to be deployed in the target device. The following Table 5 provides the com-

parison of the converted TensorFlow Lite model (float32) and the quantized model (int8) 

in terms of latency, memory and accuracy. 

Table 5. Model Comparision. 

 Unoptimized Model (FLOAT32) Quantized Model (INT8) 

 Classifier Total Classifier Total 

Latency 955 ms 955 ms 48 ms 48 ms 

RAM 58.6 K 58.6 K 17.0 K 17.0 K 

Flash 32.8 K  34.7 K  

Accuracy 96.63% 95.85% 

5. Conclusions 

This study proposes a health monitoring system specifically developed for snoring 

detection using Tiny Machine Learning (TinyML) models. The primary objective of the 

research is to develop a TinyML-based snoring detection model to accurately identify spe-

cific audio patterns associated with snoring during sleep. The research also aimed at de-

signing TinyML model for resource-constrained Internet of Things (IoT) devices. To test 

the efficacy of the proposed model, the experiments are conducted in real-world sleep 

environments by deploying the TinyML model to resource constrained wearable IoT 
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device. The results have shown that model has achieved high accuracy and while using 

the minimal computational resource on the target wearable device. The quantized model 

achieved accuracy of 95.85% with the low latency of 48 milliseconds, RAM 17.0 K and 

Flash 34.7 K making the model ideal choice for wearable devices. This research demon-

strates the feasibility and practicality of implementing snoring detection TinyML models 

on resource constrained IoT devices and provides a non-intrusive method of sleep moni-

toring. The proposed research makes an important contribution to the advancement of 

TinyML applications in health monitoring. 
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