Performance analysis of FEM simulated LTCC diaphragm

Dr. Fikret Yıldız Hakkari University, Departman of Electrical-Electronics Engineering

26-28-November-2024

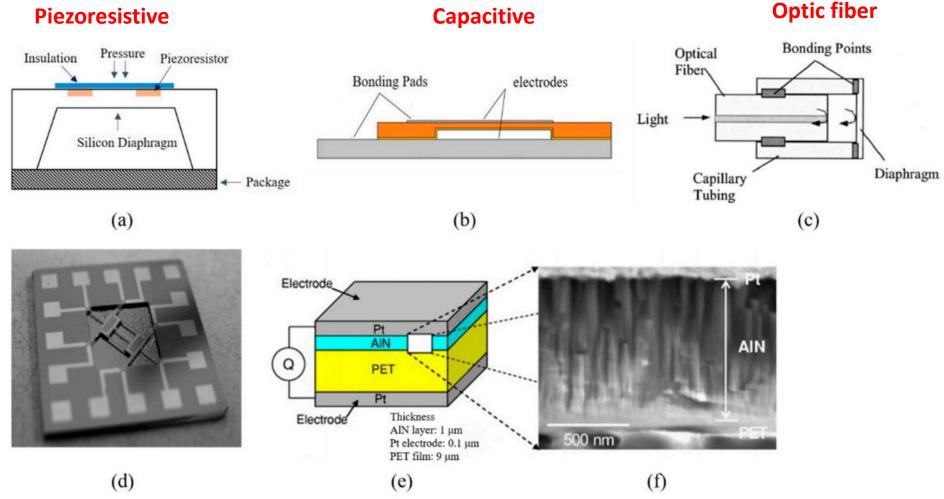
Outline

1. MEMS Pressure Sensor

a) Type of Sensors and diaphragm based sensors

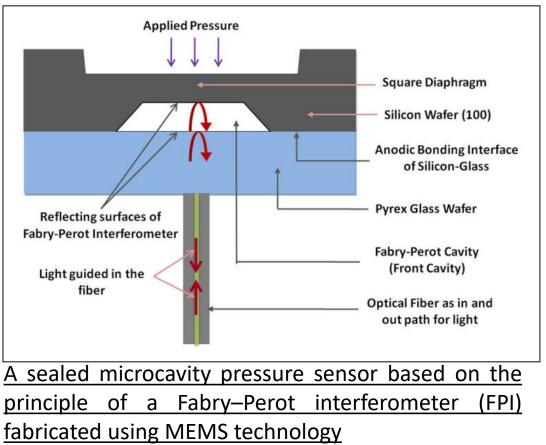
2. Low Temperature Co-Fired Ceramic (LTCC)

- a) Fabrication
- b) LTCC diaphragm based Pressure sensor design

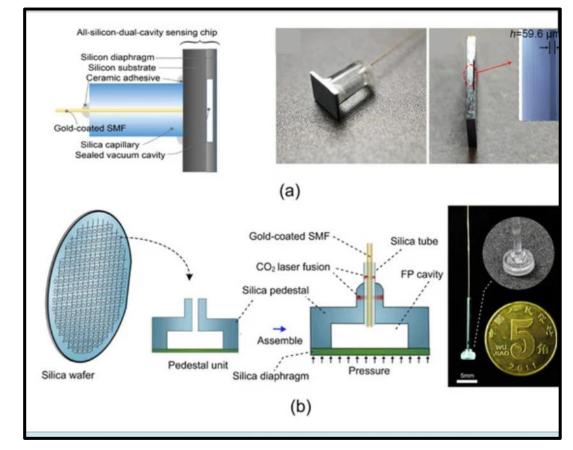

3. Results

- a) Sensitivity
- b) Frequency

4. Conclusion and Future works


1.MEMS Pressure Sensor

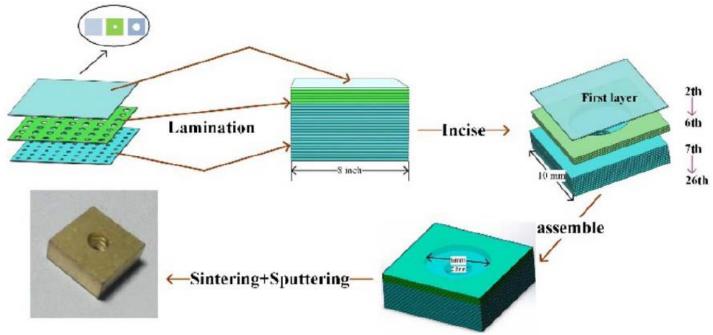
• Type of Sensors



Song, P.; Ma, Z.; Ma, J.; Yang, L.; Wei, J.; Zhao, Y.; Yang, F.; Zhang, M.; Wang, X. Recent Progress of Miniature MEMS Pressure Sensors. Micromachines, 2020, 11(56).

Diaphram Based Fiber-Optic Sensor

Mishra, S., Balasubramaniam, R. & Chandra, S. Finite element analysis and experimental validation of suppression of span in optical MEMS pressure sensors. Microsyst Technol 25, 3691–3701 (2019). https://doi.org/10.1007/s00542-019-04333-2


Chen, Y.; Lu, D.; Xing, H.; Ding, H.; Luo, J.; Liu, H.; Kong, X.; Xu, F. Recent Progress in MEMS Fiber-Optic Fabry– Perot Pressure Sensors. *Sensors* **2024**, *24*, 1079. https://doi.org/10.3390/s24041079

Diaphragm Materials: Single crystal silicon (Si), polysilicon (PolySi), graphene, Si3N4 *LTCC (low temperature co-fired ceramic) is a good candidate as a diaphgram for the high temperature applications.

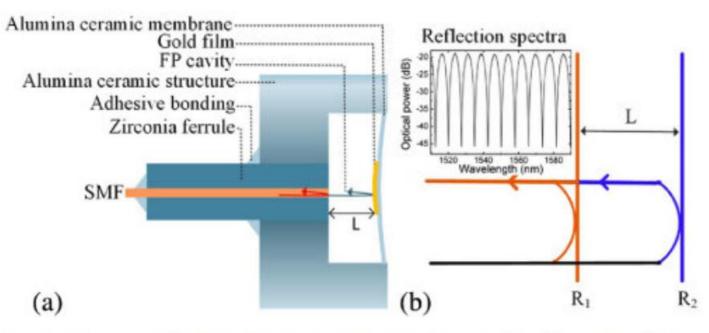
2.Low Temperature Co-Fired Ceramic (LTCC)

Fabrication

 a multilayer ceramic substrate that consists of an alumina–cordierite ceramic powder and Na₂O-Al₂O₃-B₂O₃-SiO₂ glass powder

Fabrication Steps

- Via formation
- Inner wiring
- Stacking
- Firing
- Polishing



Liu, Jia & Jia, Pinggang & Zhang, Huixin & Tian, Xiaodan & Liang, Hao & Hong, Yingping & Liang, Ting & Liu, Wenyi & Xiong, Jijun. (2018). Fiberoptic Fabry–Perot pressure sensor based on low-temperature co-fired ceramic technology for high-temperature applications. Applied Optics. 57. 4211. 10.1364/AO.57.004211.

Yıldız Fikret (2021). "Anodically bondable Low Temperature Co-Fired Ceramic (LTCC) based Fabry-Perot Interferometer (FPI) pressure sensor design", Optik, 247, Doi:10.1016/j.ijleo.2021.167755

2.Low Temperature Co-Fired Ceramic (LTCC)

• Design

Sensor configuration and principle of operation. (a) Schematic of the fiber-optic FP pressure sensor for a high-temperature environment. (b) FP cavity interference in the sensor.

Liu, Jia & Jia, Pinggang & Zhang, Huixin & Tian, Xiaodan & Liang, Hao & Hong, Yingping & Liang, Ting & Liu, Wenyi & Xiong, Jijun. (2018). Fiberoptic Fabry–Perot pressure sensor based on low-temperature co-fired ceramic technology for high-temperature applications. Applied Optics. 57. 4211. 10.1364/AO.57.004211.

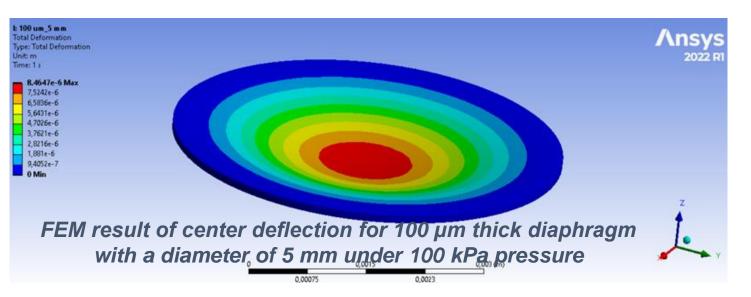
Design parameters: Thickness of LTCC diaphragms were selected **50 \mum**, **75 \mum** and **100 \mum** with the diameter of **3 mm**, **4 mm and 5 mm**, respectively.

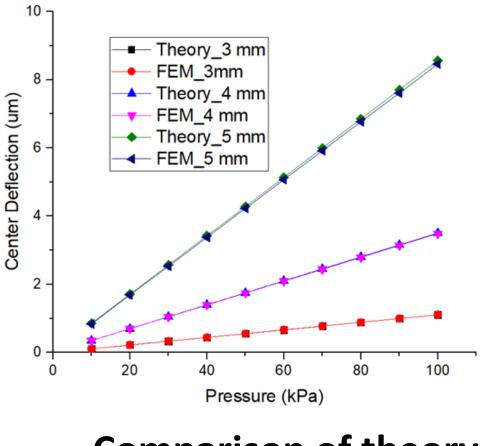
Naturel Frequency (circular shape)

$$f = \frac{10.2}{2\pi} \sqrt{\frac{E}{12(1-\nu^2)\rho}} \frac{t}{a^2}$$

Central Displacement

$$\omega(r=0) = \frac{Pa^4}{64D}$$

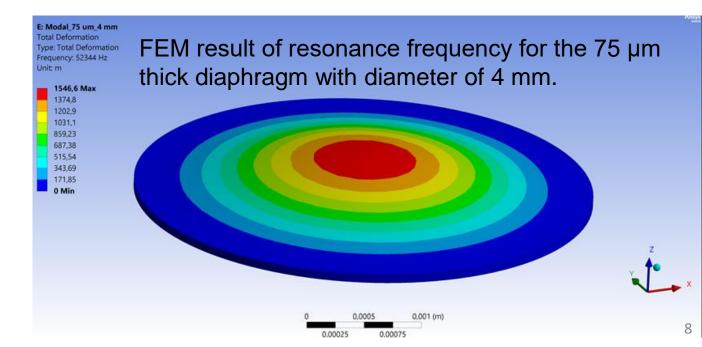

 $S=\omega/P$


3.Results

• Sensitivity (nm/kPa)

Table 1 Sensitivity (nm/kPa)

	t (µm)=50		t (μm)=75		t (μm)=100	
Diameter	Theory	FEM	Theory	FEM	Theory	FEM
(mm)						
3	88.79	88.00-88.29	26.31	26-26.17	11.10	11.12
4	280.62	278.33-279.00	83.15	82.33-82.56	35	34.90
5	685.1	680-681.2	203	201-201.8	85.6	84-84.6



Comparison of theory and FEM results

3.Results

• Frequency (kHz)

	t (µm)=50		t (µm)=75		t (µm)=100	
Diameter	Theory	FEM	Theory	FEM	Theory	FEM
(mm)	(kHz)	(kHz)	(kHz)	(kHz)	(kHz)	(kHz)
3	61.78	62.00	92.67	92.89	123.56	123.32
4	34.75	34.89	52.13	52.34	69.50	69.67
5	22.24	22.32	33.36	33.49	44.48	44.64

4.Conclusion and Future works

- The effect of diaphragm thickness and radius on sensitivity and naturel frequency for circular LTCC diaphragms proposed and studied.
- FEM analysis and analytical results were obtained and compared for circular diaphragm.
- Future work of this study is performance analysis (numerical and analytical) of LTCC diaphragm with different geometry (circular, square, hexagon, etc.).

Thank You...