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Abstract: Diabetes Mellitus is a significant global health issue, affecting over half a billion people 

worldwide. Current glucose monitoring methods are invasive, painful, and require skilled applica-

tion, highlighting the need for development of effective, non-invasive, and easy to use methods. 

This paper presents our work on the design, development, and evaluation of a non-invasive blood 

glucose monitoring system, utilizing Near-Infrared Spectroscopy technique for glucose monitoring. 

The proposed system comprises of MAX30102 biosensor connected to an ESP32 microcontroller. 

The biosensor captures the photoplethysmogram signals, which are then processed by a microcon-

troller to evaluate blood glucose level. In order to increase the accuracy of the results, we have in-

corporated linear regression with Clarke error grid analysis to calibrate our system. The linear re-

gression model is trained by comparing the results obtained through the developed system with 

that of commercial-off-the-self invasive device. The glucose levels obtained through the developed 

system are displayed in real-time on an Organic LED (OLED) screen and simultaneously uploaded 

to a cloud server via Internet of Things for remote monitoring. To validate the performance of the 

proposed system, we have compared the performance metrics of our system against existing solu-

tions published in the literature. Performance comparison show that our system achieves a reason-

ably good accuracy with a root mean square error of 13.8 mg/dL and a mean absolute relative dif-

ference of 12%. The proposed system offers a painless and convenient solution, potentially improv-

ing glucose monitoring for patients. 

Keywords: near infrared spectroscopy; non-invasive; blood glucose monitoring; linear regression; 

Internet of Things (IoT) 

 

1. Introduction 

Diabetes Mellitus is a prevalent and serious metabolic condition affecting millions 

worldwide, with a projected rise in cases to 783 million by 2045 according to the Interna-

tional Diabetes Federation [1]. Effective management and monitoring of blood glucose 

levels (BGL) are essential to prevent severe complications such as heart disease, kidney 

failure, and stroke. Traditional glucose monitoring methods, which require invasive fin-

ger-prick blood tests multiple times daily, are not only painful and inconvenient but also 

limited in providing continuous glucose monitoring, a necessity for optimizing diabetes 

management. This has spurred significant research interest in the development of non-
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invasive BGL monitoring techniques, which promise greater comfort, convenience, and 

cost-effectiveness. 

Non-invasive glucose monitoring techniques are being explored in recent years [2], 

with optical methods like Near-Infrared (NIR) spectroscopy showing significant promise. 

NIR spectroscopy, which operates within the 750–2500 nm wavelength range, offers deep 

skin penetration and has been identified as a cost-effective solution for glucose monitoring 

[3]. The effectiveness of these systems hinges on selecting an appropriate NIR wavelength. 

At 880 nm, light balances deep tissue penetration with moderate water absorption [4], 

ensuring it reaches the capillaries where glucose levels are representative of BGL concen-

trations. This wavelength minimizes interference from other tissues and benefits from the 

availability and affordability of 880 nm components, making it ideal for research and real-

world applications. By leveraging the “therapeutic window,” 880 nm optimizes accuracy 

and reliability in non-invasive glucose monitoring. These methods provide a framework 

for developing devices that can replace invasive glucometers and offer continuous moni-

toring, improving patient outcomes. 

The use of Photoplethysmography (PPG) signals in glucose monitoring is another 

area of research gaining traction. PPG is an optical technique that measures changes in 

blood volume in the microvascular bed of tissue [5], typically using a light source like an 

LED and a photodetector. The PPG signal, when processed and interpreted correctly, can 

provide valuable insights into heart rate, blood flow, and oxygen saturation, which are 

indirectly related to glucose levels. This optical technique, combined with the application 

of Machine Learning (ML) models, allows for the correlation between PPG signals and 

BGLs. Such advancements suggest the potential for continuous, non-invasive glucose 

monitoring, which could significantly enhance diabetes management. Despite the ad-

vancements in non-invasive glucose monitoring technologies, there remains a need for a 

comprehensive solution that integrates these technologies into a user-friendly, real-time 

monitoring system. 

In this paper, we have presented the work undertaken to design, develop, and eval-

uate a sensor-based non-invasive BGL monitoring system. The aim of this research is to 

address the need for easy-to-use and painless methods of BGL monitoring by developing 

an Internet of Things (IoT) enabled, prick-free BGL monitoring system that utilizes NIR 

spectroscopy and PPG signals to gauge glucose level in the body. We have increased the 

accuracy of the results obtained through this system by incorporating linear regression 

with Clarke error grid analysis [6] for calibration. We have validated the performance of 

our developed system by comparing its performance against existing solutions published 

in the existing literature, which show a reasonably accuracy, meeting the standards of 

currently available methods of BGL monitoring. The BGL obtained through the developed 

system are displayed in real-time and also uploaded to a cloud server via IoT for remote 

monitoring. 

Rest of the paper is organized as follow: In Section 2 we have discussed the system 

design elaborating the hardware implementation, data collection, and calibration of the 

systems. Results are discussed in Section 3 along with comparative analysis to validate the 

accuracy. Concluding remarks are provided in Section 4. 

2. System Design and Development 

In this section we have presented the system design components and their intercon-

nectivity to obtain an IoT enabled device for BGL monitoring. There are three aspects to 

the system design, first being the hardware involved in device prototyping, secondly the 

linear regression to calibrate the sensor to detect accurate BGL reading and thirdly the 

cloud connectivity of the controller using ThingSpeak for data storage and visualization. 

These aspects are discussed in detail in subsequent subsections. 

2.1. Hardware System Design and Implementation 
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In order to acquire BGL reading, we have utilized the infrared (IR) component of the 

MAX30102 biosensor by Analog Devices (United States) to develop a non-invasive BGL 

monitoring system. The sensor emits 880 nm IR light, a wavelength carefully selected for 

its ability to penetrate tissue and interact with glucose molecules in the blood. By analyz-

ing the reflected IR light, our system detects changes in absorption that correspond to 

glucose concentrations, allowing us to estimate BGL without invasive procedures. We 

have fine-tuned the sensor’s performance through software adjustments, ensuring it 

meets the specific demands of BGL. The MAX30102’s compact design and effective ambi-

ent light rejection capability makes it suitable for wearable applications as well, enabling 

reliable monitoring in various conditions. In our system, the ESP32 microcontroller plays 

a pivotal role in sensor integration, acquisition of data and it’s processing and communi-

cation to the cloud. Leveraging its dual-core architecture, we program the ESP32 using the 

Arduino IDE to handle real-time data from the biosensor, ensuring accurate and timely 

BGL estimations. Using its Wi-Fi connectivity capabilities for seamless data transfer, we 

have programmed the controller to upload BGL readings against each patient to the IoT 

cloud. The final system integrates the MAX30102 biosensor with the ESP32 microcontrol-

ler, enabling real-time, non-invasive blood glucose monitoring and seamless data commu-

nication within the IoT ecosystem. The BGL reading along with patient ID is also dis-

played on the OLED display interfaced with the ESP32 controller. Figure 1 depicts the 

system design showing interworking of ESP32, MAX30102 biosensor and the OLED dis-

play. The figure also shows stage of ML model analysis for accurate BGL prediction. Fig-

ure 2 shows the hardware implementation of the design proposed in Figure 1. 

 

Figure 1. System design showing connectivity and interworking of ESP32, MAX30102 sensor and 

real-time OLED display. 
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Figure 2. Hardware Implementation of the system design. 

2.2. Data Collection and Linear Regression  

To enhance the accessibility of our system and reduce the dependency on individual 

calibration, we developed generalized models. These models enable glucose measure-

ment without requiring each user to perform multiple invasive readings for calibration. 

Considering the variations in body composition and glucose metabolism, we categorized 

the models based on Body Mass Index (BMI) into three groups: underweight (BMI < 19), 

moderate weight (19 < BMI < 25), and overweight (BME > 25). Different weight categories 

exhibit distinct characteristics, such as varying levels of body fat and typically higher glu-

cose levels in overweight individuals compared to those with moderate or underweight. 

By categorizing the models into underweight, moderate-weight, and overweight groups, 

we can better account for these variations and improve the accuracy of the models, ensur-

ing that users from different BMI categories can obtain reliable glucose readings. For the 

underweight category, data was collected from 12 individuals. The data was collected 

anonymously and each participant provided data points, including age, gender, BMI, PPG 

voltage (X), and invasive blood glucose levels (Y). These data points were tabulated and 

used to compute the coefficients for the linear regression model. Coefficients were derived 

from the collected data, forming the regression model for predicting blood glucose con-

centrations for underweight individuals based on their PPG readings. Same procedure 

was followed for data collection from 14 individuals in the moderate weight category and 

for 8 individuals in the overweight category. Table 1 shows the consolidated data from the 

three categories. 

Table 1. Data Collection for development of underweight, moderate weight and overweight model. 

Underweight Data Moderate Weight Data Overweight Data 

Age Gender BMI 
PPG Volt-

age (X) 
BGL (Y) Age Gender BMI 

PPG Volt-

age (X) 

BGL 

(Y) 
Age Gender BMI 

PPG Volt-

age (X) 
BGL (Y) 

21 Male 14.75 1.24 118 21 Male 19.08 1.27 79 22 Male 25.21 1.16 100 

21 Male 16.13 1.2 60 21 Female 19.29 1.4 99 40 Male 25.39 1.23 92 

21 Male 16.13 1.35 77 21 Female 19.38 1.33 94 23 Female 25.68 1.05 109 

19 Female 16.67 1.47 89 21 Female 19.58 1.39 125 45 Male 26.68 1.21 155 

22 Male 17.04 1.25 84 22 Female 20.18 1.36 117 37 Female 29.02 1.25 118 

22 Male 17.23 1.3 98 23 Female 20.80 1.33 109 29 Male 30.60 1.34 84 

43 Male 17.77 1.16 118 21 Male 21.02 1.33 82 47 Male 31.24 1.03 121 

22 Female 18.14 1.42 84 22 Male 21.65 1.01 102 21 Female 34.67 1.28 94 

21 Female 18.16 1.3 66 21 Female 22.27 1.47 89      

22 Male 18.25 1.28 86 42 Male 23.10 0.75 87      

22 Male 18.11 1.25 82 29 Female 23.44 1.12 99      

21 Female 18.45 1.39 91 24 Male 24.21 1.43 80      

     45 Male 24.81 1.1 103      

     32 Male 24.97 0.86 63      

Assume 𝑋 = {𝑋1, 𝑋2, … , 𝑋𝑛} represents the set of PPG readings obtained through the 

developed systems and 𝑌 = {𝑌1, 𝑌2, … , 𝑌𝑛}  represents the set of the BGL readings ob-

tained through the invasive method. Using the data set a linear regression model to relate 

the PPG reading to the BGL reading can be developed in the following form  

𝑌 = 𝑚𝑋 + 𝑏 (1) 

where, the coefficients slope 𝑚 and intercept 𝑏 are calculated using the linear regression 

model as given in Equations (2) and (3).  

𝑚 =
∑(𝑋𝑖 − �̄�)(𝑌𝑖 − �̄�)

∑(𝑋𝑖 − �̄�)2
 (2) 
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where 𝑋𝑖 and 𝑌𝑖 are individual data points of PPG Reading and Invasive BGL Reading 

respectively and �̄� and �̄� are the mean values of 𝑋 and 𝑌 data points respectively. 

𝑏 = �̄� − 𝑚�̄� (3) 

The regression model presented in Equation (1) was formed for the three categories 

for predicting blood glucose concentrations based on their PPG readings. 

2.3. Clarke Error Grid Analysis 

Non-invasive glucose measuring devices have gained significant attention due to 

their potential to improve patient compliance and quality of life. Evaluating the perfor-

mance of these devices is essential to ensure their reliability and effectiveness. One of the 

most widely used methods for assessing the clinical reliability of glucose measurement 

systems is the Clarke Error Grid Analysis (CEGA) [7]. The CEGA is designed to categorize 

the clinical significance of discrepancies between a reference method (usually a laboratory 

glucose measurement) and the device under test. It divides the possible range of glucose 

values into five zones (A to E) [7], each representing different levels of clinical accuracy 

and potential risk to the patient. The current international standard that regulates the pre-

cision of glucose measurement systems is ISO 15197:2015 [8] (The International Organiza-

tion for Standardization (ISO), 2013). According to this standard, for Clarke Error Grid 

Analysis, measurement systems must meet the criteria that 99% of the individual meas-

ured glucose values must fall within Zones A or zone B of the Clarke Error Grid. This 

stringent requirement ensures that glucose monitoring devices provide clinically accurate 

readings that are safe for patient use. 

2.4. Data Visualization Using ThingSpeak  

ThingSpeak [9] is an Internet of Things (IoT) analytics platform service that allows 

users to aggregate, visualize, and analyze live data streams in the cloud. By leveraging 

ThingSpeak, we can upload glucose readings in real-time, store them against individual 

patient channels, and visualize this data to facilitate better monitoring and management 

of glucose levels. Setting up ThingSpeak channels was crucial in organizing and managing 

the glucose data for individual patients. Ensuring that the glucose data is accessible to the 

right individuals while maintaining privacy is paramount. For this purpose, our system 

provides secure login credentials for each user, as well as flexible data access and sharing 

options to accommodate different needs. These include private, public, and shared access 

channels that restrict data access on three different levels. 

3. Results and Comparative Analysis of the Developed System 

In this section, we have presented the results obtained after developing the system 

and apply CEGA to compute BGL through PPG signal. The results have been analyzed in 

relation to the underweight, moderate weight, and overweight model. Moreover, we have 

also presented comparison of the developed prototype performance with existing systems 

which use non-invasive methods for BGL monitoring. 

3.1. Performance of Generalized Calibration Models 

To validate the predictive accuracy of our non-invasive blood glucose monitoring 

system, we employ Root Mean Square Error (RMSE) and Mean Absolute Relative Differ-

ence (MARD) metrics. These assessments provide crucial quantitative measures of the 

system’s performance in predicting blood glucose levels based on optical sensor data. The 

accuracy of generalized models, segmented by BMI ranges, provides insights into how 

effectively these models predict blood glucose levels across varying body mass index cat-

egories. This segmentation allows for tailored predictions that account for the physiolog-

ical differences associated with different BMI levels, enhancing the precision of non-inva-
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sive blood glucose monitoring. Table 2 provides few samples for the comparison of un-

derweight, moderate weight, and overweight models calculated values using the system 

and blood glucose level using invasive method. 

Table 2. Comparison of underweight, moderate weight, and overweight models calculated values 

through our non-invasive system and invasive glucose values. 

Underweight Moderate Weight Overweight 

BGL (Invasive) BGL (Non-Invasive) BGL (Invasive) BGL (Non-Invasive) BGL (Invasive) BGL (Non-Invasive) 

84 86.7 107 101 97 107 

82 86.84 96 89.64 81 103 

77 83.32 83 94.34 134 108.21 

96 89.7 88 100.33 109 113.2 

83 85.8 81 97.46 87 92.07 

All three models have been tailored to accurately predict blood glucose levels specif-

ically for individuals with BMI values indicating the conditions defined under each cate-

gory. It incorporates adjusted coefficients to accommodate unique physiological charac-

teristics such as reduced subcutaneous fat and potential variations in blood flow dynamics 

typical of this BMI range, ensuring precise and reliable glucose level predictions. Table 3 

summarizes the performance metrics evaluated for each of the category 

Table 3. Summary of evaluated performance metrics. 

Model RMSE (mg/dL) MARD (%) 

Underweight model 14.5365 10.85761% 

Moderate weight model 11.20719 12.04549% 

Overweight model 16.077 13.27936% 

Clarke Error Grid Analysis 

One of the most widely used methods for assessing the clinical reliability of glucose 

measurement systems is the Clarke Error Grid Analysis (CEGA). As can be seen in Figure 

3, the results show that for the proposed linear regression models, 76.5% of the points fell 

into Zone A, 23.5% of the points fell into Zone B, and 0% of the points fell into Zones C, 

D, and E. These results indicate that 100% of the measurements fall within the clinically 

acceptable range (Zones A and B), demonstrating the device’s high accuracy and reliabil-

ity, also meeting the ISO 15197:2015 requirement that 99% of measurements must be 

within Zones A and B. 
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Figure 3. Clarke Error Grid Analysis of the Estimated Glucose Values using proposed model. 

3.2. Comparative Analysis Against Existing Non-Invasive BGL Systems 

In the comparative analysis, the accuracy of the non-invasive blood glucose monitor-

ing system have been evaluated against existing solutions found in published literature. 

This assessment is based on metrics RMSE and MARD to gauge the system’s efficacy in 

predicting blood glucose levels without invasive procedures. For the selection of compa-

rable solutions shown in Table 4, we identified relevant studies [10-14] that focus on non-

invasive methods for measuring BGL. These solutions were chosen based on their use of 

similar methodologies involving optical sensors, PPG, and comparable metrics for accu-

racy assessment identified in the literature review, RMSE and MARD. The selected studies 

represent a diverse range of approaches and technologies aimed at achieving reliable and 

precise non-invasive blood glucose monitoring, providing a comprehensive basis for com-

parison with our proposed system. Our developed system demonstrates reasonably accu-

rate performance, achieving an RMSE of approximately 13.84 and a MARD of 12.08%. 

These values indicate that our developed system performs competitively, even when com-

pared to established research. For instance, while Joshi et al. [10] present RMSE values of 

13.57 and 11.5 with MARD values of 4.86% and 7.30% respectively, our model maintains 

a strong standing with its balanced error rates. In [11] despite having the highest MARD 

value of 19%, shows a lower RMSE of 8.3, indicating lower magnitude errors but higher 

relative errors compared to our model. Overall, while there is room for improvement in 

terms of reducing both RMSE and MARD to achieve more accurate and reliable predic-

tions, the proposed model displays a reasonable performance, proving to be an accurate 

predictor. 

 

Table 4. Comparison of Proposed System with previous work based on RMSE and MARD values. 

Research Work Wavelength Used RMSE MARD 

A. M. Joshi, et al. [10] 940 nm & 1300 nm 13.57 mg/dL 4.86% 

P. Jain, et al. [11] 940 nm & 1300 nm 11.5 mg/dL 7.30% 

K. Song, et al. [12] 850 nm, 950 nm, & 1300 nm 8.3 mg/dL 19% 

M. A. Al-dhaheri, et al. [13] 940 nm 10.44 mg/dL 7.25% 

A. Hina and W. Saadeh [14] 940 nm 10.20 mg/dL 6.90% 

Developed prototype 880 nm 13.94 mg/dL 12.06% 
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4. Conclusions 

This paper encapsulates the principal findings of our research work, detailing the 

journey from conceptualization to the realization of a non-invasive blood glucose moni-

toring system. Contributions discussed include the development of predictive models, 

where the authors have successfully developed both personalized and generalized pre-

dictive models for non-invasive blood glucose monitoring using PPG signals. The person-

alized models addressed individual variations, while the generalized models, categorized 

by BMI, enhanced the accessibility and accuracy of glucose readings for a diverse user 

base. Secondly, the authors have successfully integrated the developed system with 

ThingSpeak, which functions as a database for real-time glucose monitoring, ensuring se-

cure data management and dynamic monitoring capabilities. Lastly, the key accuracy 

metrics for gauging reliability and effectiveness of the predictive models for BGL moni-

toring were evaluated, which include RMSE and MARD. The system developed by the 

authors achieved an RMSE of 13.84 and a MARD of 12.08%, performing better compared 

to most of the developed systems in the existing literature. Moreover, the Clarke Error 

Grid Analysis showed 100% of measurements within clinically acceptable zones, under-

scoring the system’s high accuracy and reliability. 

To this stage we have developed a proof-of-concept (POC) for a non-invasive system. 

However, the results presented in the paper are based on the linear regression developed 

using limited data set. As future work on this system, we expect to increase the accuracy 

of the system by collecting more data using the system and developing the regression 

models based on larger datasets. Moreover, the effect of non-linear regression models is 

yet to be evaluated aiming to further increase the accuracy of the system. 
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