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Abstract: In this study, we developed and implemented a convolutional neural network (CNN) to 

predict thermal variations based on the modal distribution in LPFGs. An LPFG with a period of 450 

µm and length of 22.5 mm was constructed in a few-mode optical fiber using a CO2 laser etching 

technique. To train and verify the CNN-based model, a database of 355 empirically acquired near-

field images corresponding to the LP11 propagation modes was used. The images were captured 

with a WIDY SWIR 640 vs. infrared camera and a 980 nm laser. Similarly, the model’s hyperparam-

eters were tuned using the computational tool OPTUNA, which improved its overall performance. 

The findings show that the constructed deep learning model can predict temperature with 98.5% 

accuracy over a range of 24 °C to 190 °C, with a maximum error of 3.77 °C. The root mean square 

error (RMSE) of the forecasts was 0.94 °C, indicating that the model was accurate. Finally, the infer-

ence time for a batch of 32 images was 0.055 s, confirming the effectiveness of the proposed ap-

proach. 
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1. Introduction 

Fiber optic sensors have transformed temperature measurement, providing benefits 

such as resistance to electromagnetic interference, reduced dimensions, and multiplexing 

possibilities. Numerous topologies utilizing optical fiber technology have been proposed 

over the years, including Fiber Bragg Gratings (FBGs), Long Period Fiber Gratings 

(LPFGs), interferometers, and other sophisticated designs [1–6]. Among these configura-

tions, LPFGs are distinguished by their simplicity, cost-effectiveness, and capacity to sim-

ultaneously monitor various parameters. LPFGs are periodic structures inscribed in opti-

cal fibers that couple core and cladding modes at specific wavelengths, producing reso-

nances that are responsive to environmental variations like temperature or strain [7]. 

These resonances make LPFGs exceptionally appropriate for temperature sensing appli-

cations. 

Traditionally, LPFG-based sensors are analyzed by observing the resonance wave-

length shift or transmitted power variations [7,8]. Nevertheless, these techniques may ex-

hibit limitations in sensitivity and the ability to differentiate among various variables. 

Moreover, traditional interrogation methods frequently necessitate intricate optical 
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configurations, elevating system expenses and complexity. Recent advancements in im-

aging technologies and deep learning algorithms present novel opportunities for improv-

ing fiber optic sensor interrogation [9] Utilizing near-field imaging techniques to capture 

the modal distribution of LPFGs and employing advanced image processing allows for 

extracting significant information from the excited higher-order modes in the fiber. This 

method utilizes the substantial information included in the modal distribution, which is 

acutely responsive to variations in temperature. Furthermore, the application of deep 

learning, particularly convolutional neural networks (CNNs), facilitates the creation of 

predictive models capable of precisely estimating temperature based on the acquired 

modal distributions. Numerous research studies have illustrated the efficacy of deep 

learning in the interrogation of fiber optic sensors [3–5,10] For example, fiber specklegram 

sensors (FSSs) have been investigated for temperature measurement, employing modal 

interference in multimode fibers [6]. This research demonstrated that deep learning mod-

els outperform conventional methods such as image correlation or optical power meas-

urements for accuracy and robustness. CNNs are particularly effective at extracting fea-

tures from complex speckle patterns, which can then be used for regression tasks such as 

temperature prediction. 

This study introduces an innovative temperature sensor that employs the modal dis-

tribution in LPFGs and incorporates deep learning for improved interrogation. The sensor 

was created by constructing a LPFG with a 450 µm period and a length of 22.5 mm in a 

few-mode optical fiber, to encourage the LP11 mode at 980 nm, which exhibits significant 

sensitivity to changes in temperature. Near-field images of the LP11 mode were acquired 

and utilized to establish a database for the training and validation of a CNN. The deep 

learning model attains a high degree of accuracy in temperature prediction with negligible 

error, illustrating the efficacy of this method. This study presents the novel combination 

of deep learning with LPFG-based sensors, offering a swift, dependable, and effective so-

lution for real-time temperature monitoring, with prospective applications in diverse sec-

tors including industrial, biomedical, and environmental monitoring. 

2. Methods 

2.1. Operating Principle 

The design of LPFGs is based on a periodic perturbation applied to the refractive 

index to enable energy transfer between propagation modes. The most used method to 

analyze this type of waveguide is the Coupled Mode Theory (CMT), which involves solv-

ing a set of coupled equations and calculating the coupling coefficients responsible for the 

transfer of optical power between the different modes supported by the optical fiber. 

The electromagnetic field for the interaction between the linearly polarized modes 

LP01 and LP11, can be expressed using the coefficients 𝑎𝑖1(𝑧) (where 𝑖 =  0 or 1), which 

represent the amplitude of the electric field. 

�⃗� 01(𝑥, 𝑦, 𝑧) = 𝑎01(𝑧)�⃗� 01(𝑥, 𝑦)𝑒−𝑖𝛽01𝑧

�⃗� 11(𝑥, 𝑦, 𝑧) = 𝑎11(𝑧)�⃗� 11(𝑥, 𝑦)𝑒−𝑖𝛽11𝑧
, (1) 

where �⃗� 01(𝑥, 𝑦)  and  �⃗� 11(𝑥, 𝑦) are the transversal field distributions; 𝛽01  and  𝛽11 are 

the propagation constants. 

Since the coefficients  𝑎𝑖1(𝑧) are not constants, this implies that interaction between 

orthogonal modes can occur, in other words, energy transfer or modal coupling may exist. 

According to the phase matching condition, significant power exchange in the LPFG hap-

pens when 𝛽01 − 𝛽11 +
2𝜋

Λ
= 0, which can be expressed in terms of the effective refraction 

indices and the wavelength as: 

Λ =
𝜆res 

𝑛𝑒𝑓𝑓,01−𝑛𝑒𝑓𝑓,11
, (2) 

where 𝜆res  denotes the resonance wavelength of the LPFG. 
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Thus, changes in temperature can be derived from modifications in the energy cou-

pling between the modes, as temperature variations affect the refractive index and, con-

sequently, the coupling coefficients and resonance wavelength of the LPFG. 

2.2. Experimental Setup 

The LPFG inscription system utilizing a CO2 laser (Iradion, model 155) was used, 

which was described in detail in ref. [11]. The calculated grating period (Λ) that matches 

the phase condition between LP01 and LP11 modes at 980 nm was approximately 450 µm, 

and 50 periods were inscribed per cycle, controlled via a PC interface. 

Figure 1 depicts the experimental configuration employed to get modal images at 

different temperatures. A 980 nm laser (FP-B-980-150, Optilab) was utilized, connected to 

a linear polarizer (PC1) to guarantee that the light entering the LPFG was polarized at 0°. 

The light propagated through a 0.2 m PANDA fiber, which maintained the polarization 

invariance. The PANDA fiber was spliced to the manufactured LPFG in a single-mode 

optical fiber (SMF-28, Corning). A 20x objective lens collected the transmitted light at the 

output, while an adjustable analyzer (PC2) facilitated the assessment of polarization ef-

fects. The modal intensity distribution at the LPFG output was recorded with a WiDy 

SWIR 640v camera, facilitating accurate image analysis of the modal structure under var-

ying temperatures. These temperature changes on the LPFG were induced using a ceramic 

heater. 

The laboratory conditions for the experiments were 24 °C and 65% humidity. The 

temperature perturbances on the fiber were regulated by an Arduino-based system. A ce-

ramic heater and thermistors supplied real-time data via the OptiGUI DataCollector pro-

gram, guaranteeing thermal uniformity along the LPFG [12]. 

 

Figure 1. Schematic of the experimental setup. 

2.3. Data Preprocessing and Model Training 

The CNN model used in this work is based on the MobileNet architecture, that is a 

pre-trained model for image classification tasks [13]. Our dataset, acquired with the SWIR 

camera, consists of 16-bit grayscale images with 640 × 512 pixels of resolution. Since Mo-

bileNet is designed to process three-channel (RGB) inputs, we converted the grayscale 

images to RGB by replicating the grayscale values across all the channels. Likewise, all 

images were cropped to 224 × 224 pixels to ensure compatibility with the input require-

ments of the architecture, and to center the intensity pattern within the field of view. 

On the other hand, data augmentation techniques were applied, including contrast 

adjustment and additive gaussian noise, to increase the diversity of the dataset and im-

prove the model’s ability to generalize. The images were normalized to have pixel values 

between 0 and 1. The labeled dataset, comprising 1200 images after data augmentation, 

was randomly divided into 70% for training, 20% for validation, and 10% for testing. This 

facilitated efficient hyperparameter optimization while ensuring a continuous model eval-

uation without introducing selection biases. 

In this study, the MobileNet architecture was adapted from a classification task to a 

regression model aimed at predicting temperature values from experimental image data 

[6]. By leveraging transfer learning, we used pre-trained weights from the ImageNet 
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dataset, which consists of 1000 image classes [13]. To customize the architecture for re-

gression, the original classification layer was removed and added three fully connected 

layers, each one with 1024 neurons and ReLU activations, followed by a dropout layer 

with a rate of 0.1. The final layer was modified for regression, enabling the model to esti-

mate temperature values based on visual features extracted from the LP11 mode intensity 

patterns. The model was implemented in Python with the deep learning frameworks 

Keras and TensorFlow. Hyperparameter optimization and performance enhancement 

were conducted using the Optuna library [14]. 

Additionally, we incorporated a learning rate scheduler with exponential decay, 

which dynamically adjusts the learning rate throughout training. This method uses an 

exponential function to gradually reduce the learning rate from its initial value, governed 

by a decay factor and applied at predefined intervals, helping ensure more efficient con-

vergence. 

3. Results and Discussion 

Figure 2 shows several images corresponding to the LP11 mode captured under var-

ying temperature conditions. The variations in intensity distribution signify the altera-

tions in temperature applied to the fiber, demonstrating the consequent changes in mode 

coupling. 

 

Figure 2. Intensity patterns of the LP11 mode captured at different temperature conditions. 

The performance of the MobileNet model adapted for temperature regression using 

the Mean Squared Error (MSE) was evaluated. Figure 3 presents the optimization history 

(using Optuna), illustrating how the MSE fluctuates based on the different hyperparame-

ter combinations tested. Specific regions can be identified where the model achieved a 

lower MSE, indicating more effective hyperparameter configurations. The points on the 

graph represent the outcomes of each of the 100 trials conducted. The optimal combina-

tion of hyperparameters that yielded the best performance included an initial learning 

rate of 0.00228, a decay rate of 0.8559, and decay steps of 6480. 

 
(a) (b) (c) 

Figure 3. Scatter plots of the optimization history showing the variations in MSE across 100 trials 

using different hyperparameter configurations. The scatter points represent individual trial tests: (a) 

initial learning rate vs. decay rate, (b) initial learning rate vs. decay steps, and (c) decay steps vs. 

decay rate. 

In Figure 4, the main plot illustrates the performance of the model using a scatter 

plot, where the actual temperature values (𝑥-axis) were compared with the predicted val-

ues (𝑦-axis). Most of the points lie close to the line 𝑦 = 𝑥 indicating that the predictions 

closely align with the real values. This indicates good model performance. The points are 
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in different colors representing the various data subsets, and their uniform distribution 

around the diagonal line suggests that the model generalizes well across all partitions. 

The histograms along the top and right axes reflect the distribution of the real and pre-

dicted temperature values confirming a low error dispersion between the predicted and 

actual distributions, further indicating consistent predictions across the entire range of 

experimental temperatures. Additionally, the inset graph in the low corner shows the 

training loss and validation loss over time. Both losses converge to low values, with no 

significant gap between them, implying minimal overfitting and suggesting that the 

model generalizes well to unseen data. 

 

Figure 4. Scatter plot comparing actual vs. predicted temperature values showing accurate predic-

tion capability of the model. Top and right histograms show the distribution of actual and predicted 

values with low variation between them. The inset graph depicts training and validation loss curves 

showing rapid convergence and minimal overfitting. 

The graphical evaluation is further validated by the quantitative results obtained: a 

prediction accuracy of 98.5%, a maximum error of 3.77 °C, and a root mean square error 

(RMSE) of 0.94 °C across a temperature range of 24 to 190 °C. Additionally, the model 

demonstrated an inference time of 0.055 s for a batch of 32 images. These results confirm 

the effectiveness of the proposed approach, utilizing machine learning to achieve highly 

accurate and efficient temperature predictions. 

4. Conclusions 

In this study, a temperature sensor based on the modal distribution of Long Period 

Fiber Gratings (LPFG) was developed using a deep learning approach. By inscribing an 

LPFG in an optical fiber and capturing images of the LP11 mode under varying thermal 

conditions, we trained a convolutional neural network (CNN) based on the MobileNet 

architecture. Through the integration of image processing techniques and hyperparame-

ter optimization using the Optuna library, we achieved a prediction accuracy of 98.5% and 

a root mean square error (RMSE) of 0.94 °C. 

The graphical results clearly demonstrate the model’s strong predictive capabilities 

in temperature regression. The tight clustering of data points along the diagonal, the low 

dispersion in the histograms, and the rapid convergence in the loss plot underline the 

model’s ability to accurately predict temperature values, with robust generalization across 

different data subsets. 
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Furthermore, the model’s fast inference time of 0.055 s for a batch of 32 images high-

lights its efficiency, making it suitable for real-time applications. Overall, this study con-

firms the effectiveness of combining LPFG-based sensors with machine learning to de-

velop accurate, reliable, and efficient temperature sensing systems. 

Author Contributions: J.S.-P. and J.A.M.: conceptualization, methodology, visualization, investiga-

tion, software, data curation, writing—review and editing. Y.R.M. and J.M.-C.: conceptualization, 

methodology, investigation, formal analysis, resources, data curation, writing—original draft, writ-

ing—review and editing, and funding acquisition. J.M.-C.: investigation, data curation, formal anal-

ysis, writing—review and editing. E.R.-V. and J.H.-R.: investigation, resources, supervision, writ-

ing—review and editing, formal analysis, and project administration. All authors have read and 

agreed to the published version of the manuscript. 

Funding: The authors acknowledge the support of Instituto Tecnologico Metropolitano, through 

project PE24201. 

Institutional Review Board Statement: Not applicable. 

Informed Consent Statement: Not applicable 

Data Availability Statement: The raw data supporting the conclusions of this article will be made 

available by the authors on request. 

Conflicts of Interest: The authors declare no conflict of interest. 

References 

1. Reyes-Vera, E.; Cordeiro, C.M.B.; Torres, P. Highly Sensitive Temperature Sensor Using a Sagnac Loop Interferometer Based 

on a Side-Hole Photonic Crystal Fiber Filled with Metal. Appl. Opt. 2017, 56, 156. https://doi.org/10.1364/AO.56.000156. 

2. Reyes-Vera, E.; Jimenez-Durango, C.; Varon, M.; Torres, P. Fourier Scheme for the Fiber Loop Mirror Temperature Sensor Based 

on Indium-Filled Side-Hole Photonic Crystal Fiber. In Proceedings of the 2018 International Conference on Electromagnetics in 

Advanced Applications (ICEAA), Cartagena, Colombia, 10–14 September 2018; pp. 199–201. 

https://doi.org/10.1109/ICEAA.2018.8520400. 

3. Sridevi, S.; Kanimozhi, T.; Ayyanar, N.; Chugh, S.; Valliammai, M.; Mohanraj, J. Deep Learning Based Data Augmentation and 

Behavior Prediction of Photonic Crystal Fiber Temperature Sensor. IEEE Sens. J. 2022, 22, 6832–6839. 

https://doi.org/10.1109/JSEN.2022.3150240. 

4. Gao, X.; Wu, J.; Song, B.; Liu, H.; Duan, S.; Zhang, Z.; Liu, X.; Sun, H. Deep Learning for Temperature Sensing With Microstruc-

ture Fiber in Noise Perturbation Environment. IEEE Photonics Technol. Lett. 2023, 35, 1247–1250. 

https://doi.org/10.1109/LPT.2023.3313584. 

5. Pan, R.; Wang, C.; Yang, W.; Liu, J.; Zhang, L.; Yu, S.; Wu, H.; Zhang, M.; Wu, Y. A Deep Learning Assisted Fiber Optic Sensor 

Capable of Simultaneously Measuring Temperature and Vector Magnetic Field. IEEE Sens. J. 2024, 24, 30128–30135. 

https://doi.org/10.1109/JSEN.2024.3443853. 

6. Vélez, F.; Arango, J.; Aristizábal, V.; Trujillo, C.; Herrera-Ramírez, J. Comparative Performance Evaluation of Classical Methods 

and a Deep Learning Approach for Temperature Prediction in Fiber Optic Specklegram Sensors. Comput. Opt. 2024, 48, 689–695. 

https://doi.org/10.18287/2412-6179-CO-1467. 

7. Valencia-Garzón, S.; Reyes-Vera, E.; Galvis-Arroyave, J.; Montoya, J.P.; Gomez-Cardona, N. Metrological Characterization of a 

CO2 Laser-Based System for Inscribing Long-Period Gratings in Optical Fibers. Instruments 2022, 6, 79. 

https://doi.org/10.3390/instruments6040079. 

8. Barino, F.O.; de Aguiar, E.P.; de Mello Honorio, L.; Silva, V.N.H.; Lopez-Barbero, A.P.; dos Santos, A.B. A Fuzzy Approach to 

LPFG-Based Optical Sensor Processing and Interrogation. IEEE Trans. Instrum. Meas. 2022, 71, 2520207. 

https://doi.org/10.1109/TIM.2022.3216390. 

9. Reyes-Vera, E.; Valencia-Arias, A.; García-Pineda, V.; Aurora-Vigo, E.F.; Alvarez Vásquez, H.; Sánchez, G. Machine Learning 

Applications in Optical Fiber Sensing: A Research Agenda. Sensors 2024, 24, 2200. https://doi.org/10.3390/s24072200. 

10. Arango, J.D.; Aristizabal, V.H.; Carrasquilla, J.F.; Gomez, J.A.; Quijano, J.C.; Velez, F.J.; Herrera-Ramirez, J. Deep Learning Clas-

sification and Regression Models for Temperature Values on a Simulated Fibre Specklegram Sensor. J. Phys. Conf. Ser. 2021, 

2139, 012001. https://doi.org/10.1088/1742-6596/2139/1/012001. 

11. Soto-Perdomo, J.; Reyes-Vera, E.; Montoya-Cardona, J.; Torres, P. Experimental Dataset of Tunable Mode Converter Based on 

Long-Period Fiber Gratings Written in Few-Mode Fiber: Impacts of Thermal, Wavelength, and Polarization Variations. Data 

2023, 9, 10. https://doi.org/10.3390/data9010010. 

12. Soto-Perdomo, J.; Morales-Guerra, J.; Arango, J.D.; Montoya Villada, S.; Torres, P.; Reyes-Vera, E. OptiGUI DataCollector: A 

Graphical User Interface for Automating the Data Collecting Process in Optical and Photonics Labs. SoftwareX 2023, 24, 101521. 

https://doi.org/10.1016/j.softx.2023.101521. 



Eng. Proc. 2024, 6, x FOR PEER REVIEW 7 of 7 
 

 

13. Howard, A.G.; Zhu, M.; Chen, B.; Kalenichenko, D.; Wang, W.; Weyand, T.; Andreetto, M.; Adam, H. MobileNets: Efficient 

Convolutional Neural Networks for Mobile Vision Applications. arXiv 2017, arXiv:1704.04861. 

https://doi.org/10.48550/arXiv.1704.04861. 

14. Akiba, T.; Sano, S.; Yanase, T.; Ohta, T.; Koyama, M. Optuna: A Next-generation Hyperparameter Optimization Framework. In 

Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, Anchorage, AK, 

USA, 4–8 August 2019; ACM: New York, NY, USA, 2019; pp. 2623–2631. https://doi.org/10.1145/3292500.3330701. 

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual au-

thor(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to 

people or property resulting from any ideas, methods, instructions or products referred to in the content. 


