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Abstract: The state of art Hybrid Brain Computer Interface (BCI) have shown improved classifica-

tion of mental states either by combining different modalities or by choosing a combination of BCI 

activation tasks. Among these, the classification of motor imagery/executions tasks of contralateral 

and ipsilateral data of upper arm is found challenging due to its spatial adjacency and retention of 

these spatial features. The proposed work uses a Hybrid BCI dataset acquired using EEG and fNIRS 

for upper limb movement (Right hand/Left Hand, Right Arm/Left Arm). The electrode positioning 

is along the motor cortex and previous deep learning studies have shown that a good accuracy can 

be obtained without any channel selection. Hence the current study is to apply a combination of 

deep learning methods to the data which was halved into two without using channel selection al-

gorithms. The model was evaluated for both set of channels using F1-score, Precision and Recall 

with an accuracy of 89%. This investigation shows that all the channels of the studied dataset con-

tained inter-related spatial information. Also, the problem of long-term EEG/fNIRS recording can 

be addressed using this study, if the total number of channels can be used in two halves by switching 

the channels after the minimum efficient time of recording. 
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1. Introduction 

Brain-Computer Interface (BCI) uses a single modality to acquire brain signals, per-

formed during a task, and convert them into signals that can be actuated on other devices. 

However, this method has become old with the current research on Hybrid–BCI which 

can overcome the limitations of traditional BCI by combining 2 acquisition modalities. 

Non-invasive methods like electroencephalogram gram (EEG), functional near-infrared 

spectroscopy (fNIRS), and functional magnetic resonance imaging (fMRI) were more 

prominently combined for signal acquisition. EEG acquires the electrical activity of the 

cortex, while fNIRS and fMRI capture the changes in the Blood Oxygen Level Dependant 

(BOLD) signal due to changes in the hemodynamic activity of the cortex during a mental 

activation task. Although fMRI is proven to provide better information, fNIRS attracts 

better attention than fMRI due to its portability and cost-efficiency [1]. EEG-fNIRS is a 

common form of Hybrid BCI since the former has a good temporal resolution while the 

latter has a good spatial resolution. 

Motor tasks are among the common BCI activation signals, which can either be motor 

imagery signals or motor execution signals. A µ wave (8–13 Hz) is generated in the motor 

cortex of the brain during imagined or executed motor tasks [2]. These signals are primar-

ily used to improve or supplement BCI applications. Hence, the choice of the task for ob-

taining motor imagery/execution signals is carefully chosen. Researchers have given a 

study on both two-class and multi-class classification of these signals. The common choice 
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for two-class classification was Right/Left hand while for multi-class (besides right/left 

hand), the other choices were either foot/tongue or others like mental arithmetic [3,4]. 

From these, we can conclude that spatial activation of the brain signal is important for 

classification, besides the temporal characteristics, thereby only contralateral mental tasks 

were initially chosen. Nevertheless, some works have been carried out with both contra-

lateral and ipsilateral activations, like right/left hand and right/left arm [5]. The accuracy 

attained by these works is low, proving the spatial co-occurrence of features. Another au-

thor has suggested a channel selection method for obtaining improved spatial features [6]. 

However, this may lead to loss of spatial features preserved in the rejected channels. 

This calls for the utilization of deep learning models to obtain a complex feature ex-

traction and classification method which can overlook the spatial co-occurrence of the fea-

tures. Convolutional Neural Networks (CNN) and Recurrent Neural Networks (RNN) are 

found to have improved memory, sequential information and spatio-temporal infor-

mation encoding [7]. In our previous work, we have shown the use of CNN to attain a 

good classification accuracy without omitting any channel [8]. This also shows that every 

channel has a spatial information that cannot be omitted. In addition to this, the current 

work investigates the use of a hybrid CNN which is a combination of CNN and Bidirec-

tional long short-term memory (Bi-LSTM), on the performance of half the total number of 

channels to understand if the acquisition system can be operated on a switched mode. 

2. Methodology 

The dataset was obtained from CORE datasets, consisting of EEG and fNIRS data for 

the Right/Left arm and right/left hand from 15 healthy, male subjects within the age group 

of 23–50 years. fNIRS was obtained in two wavelengths, W1 = 760 nm (red) and W2 = 850 

nm (infrared). The EEG consists of 21 electrodes of the 10–20 electrode system, namely F3, 

Fz, F4, Fc5, Fc1, Fc2, Fc6, T3, C3, C1, Cz, C2, C4, T4, Cp5, Cp1, Cp2, Cp6, P3, Pz and P4. 

The electrode position shows that the electrodes are distributed in the frontal (F) and pa-

rietal (P) parallel such that the signal acquisition is restricted to the motor cortex. The 

fNIRS was so paired that the same source can be used for multiple detectors. The list of 

34 fNIRS channels are, Fc3A, Fc1A, Fc3, Fc3M, Fc1M, C3A, C1A, C3L, C3M, C1M, Cp3A, 

Cp1A, Cp3L, Cp3M, Cp1M, Cp3P, Cp1P, Fc2A, Fc4A, Fc2M, Fc4M, Fc4L, C2A, C4A, C2M, 

C4M, C4L, Cp2A, Cp4A, Cp2M, Cp4M, Cp4L, Cp2P, Cp4P–(A = Anterior, P = Posterior, 

M = Medial, L = Lateral). 

The data was randomly split into two sets, maintaining a similar count on each hem-

isphere. Table 1 shows the list of channels for set 1 and set 2 data. The pre-processing and 

augmentation of data were done separately and simultaneously for both sets. The overall 

methodology is seen in Figure 1. 

Table 1. The electrode channels chosen for splitting the dataset. 

 EEG fNIRS 

SET 1 
‘F3’ ‘F4’ ‘Fc1’ ‘Fc6’ ‘C3’ ‘Cz’ 

‘T4’ ‘Cp1’ ‘Cp2’ ‘Pz’ 

‘Fc3A’ ‘Fc1A’ ‘Fc3M’ ‘C1A’ ‘C3L’ 

‘Cp1A’ ‘Cp3M’ ‘Cp1P’ ‘Fc4A’ 

‘Fc4M’ ‘C2A’ ‘C2M’ ‘C4L’ ‘Cp2A’ 

‘Cp4A’ ‘Cp4M’ ‘Cp2P’ 

SET 2 
‘Fz’ ‘Fc5’ ‘Fc2’ ‘T3’ ‘C1’ ‘C2’ 

‘C4’ ‘Cp5’ ‘Cp6’ ‘P3’ ‘P4’ 

‘Fc3L’ ‘Fc1M’ ‘C3A’ ‘C3M’ ‘C1M’ 

‘Cp3A’ ‘Cp3L’ ‘Cp1M’ ‘Cp3P’ 

‘Fc2A’ ‘Fc2M’ ‘Fc4L’ ‘C4A’ ‘C4M’ 

‘Cp2M’ ‘Cp4L’ ‘Cp4P’ 
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Figure 1. Block diagram of methodology. 

The dataset needs to be augmented since deep learning models will require a large 

amount of data. The dataset consisted of 6 s rest and 6 s task for every trial and 25 such 

trials were performed for each class. The 6 s window of task performance, was augmented 

for a 3 s time window with an overlap of 1 s. 

The EEG signals of both sets were band-filtered using an Infinite Impulse Response 

(IIR) filter with a frequency band of 8–30 Hz and were normalized. This frequency will 

contain both motor imagery (8–13 Hz) and motor execution (13–30 Hz) frequencies. This 

also omits the power line interference. The normalization was done by subtracting the 

data with its mean and dividing by the standard deviation. The fNIRS signals were also 

augmented similar to EEG signals. The wavelength information should be converted to 

changes in hemoglobin concentration, that is, oxygenated and deoxygenated hemoglobin 

(HbO and HbR). This is done by using Modified Beer-Lamberts Law (MBLL). Where, 

However, since these are slow varying signals, they are band filtered using an IIR filter, 

between, 0.01–0.1 Hz since this band is in-phase. Both EEG and fNIRS use a 5th order filter 

since this has a constant group delay. 

The HbO and HbR data was considered as features for fNIRS signal [8]. However, 

the features for EEG data were obtained by combining Independent Component Analysis 

(ICA) and Common Spatial Pattern (CSP) using Thin–ICA CSP method [4]. CSP is known 

to give good results on two class problems [9]. Integrating this with ICA can improve 

spatial features which are better applicable for use in CNN. Since CSP is better on 2 class, 

the multi class problem is initially considered as a binary problem as Right/left and 

Arm/hand. The obtained filters are used as initialization matrix for ICA. The term Thin-

ICA denotes that only second and higher order statistics are considered. Hence from thin-

ICA two features for each class is extracted. 

These features are combined and fed to the hybrid CNN model. In this study there 

are two ways in which the data is presented to the model. The first method was with a 

redundancy in the EEG data alone and the second method was without the redundancy. 

This was done to check if the amount of data was sufficient for producing a good classifi-

cation accuracy. The combined features are first given to a three-layer CNN with 256, 128 

and 64 filters. This was then presented to three layers of Bi-LSTM with two 128 and one 

64 filters. Bi-LSTM was particularly chosen in this hybrid model due to its proven perfor-

mance in EEG classification [10]. This is further given to 4 dense layers with 128 and 32 

filters. Max pooling and elu activation was followed throughout the layers. Softmax 
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activation was applied in the last dense layer. Adam optimiser was used along with 5-fold 

cross validation. 

3. Results and Discussion 

The dataset for the work was taken from https://figshare.com/search?q=EEG-

fNIRS+hybrid+SMR+BCI+data. The data was split into two groups as seen in Table 1. EEG 

signals were band filtered and features were extracted using Thin-ICA algorithm. fNIRS 

on the other hand was also band filtered after converting the signals to optical densities. 

However, no other feature extractions methods were performed on HbO/HbR data, as 

they were considered as features itself. These were then combined using zero padding 

since the number of channels (column data) is less in EEG than that of fNIRS, i.e., 10 and 

17 channels respectively. EEG data was zero-padded and masked before giving it to the 

model, so that the zeros would not affect the classification accuracy. The amount of train-

ing and validation was split at 60% and 40% initially which gave an accuracy of 73%. 

Hence 80% of the data was split for training and 20% of data was set for validation. A 5-

fold cross validation was performed to ensure a good classification. 

Two sets of input were passed through the model separately and the results of the 

same are shown in Figure 2, which shows an accuracy of 78%. The confusion matrix labels, 

0,1,2,3 denotes the 4 classes, Right hand Left hand, Right arm and Left arm. 

  

Figure 2. Confusion Matrix (0—Right hand, 1—Left hand, 2—Right arm, 3—Left arm) (left) and 

training curve (right) for set 1 data. 

To improve accuracy, a redundancy was induced only in EEG data assuming data 

insufficiency. The classification results and their confusion matrix of redundant data of 

set 1 and 2 are shown in Figures 3 and 4 respectively. The performance metrices for both 

redundant and non-redundant data are shown in Table 2. It can be seen from Table 2, that 

a 10% increase in the performance was noted while redundancy was introduced. The pre-

vious studies that used the entire channel gave an accuracy of 99% [8]. However, the main 

aim of the study was to know if every channel contributes to the spatial features by halv-

ing the data to consist equal number of channels on left and right hemispheres. 
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Figure 3. Confusion Matrix (0—Right hand, 1—Left hand, 2—Right arm, 3—Left arm) (left) and 

Accuracy (right) for redundant set 1 data. 

 

Figure 4. Confusion Matrix (0—Right hand, 1—Left hand, 2—Right arm, 3—Left arm) (left) and 

Accuracy (right) for redundant set 2 data. 

Table 2. Performance metric for redundant and non-redundant data. 

Metric 
Non-redundant Data Redundant Data 

Set 1 Set 2 Set 1 Set 2 

Accuracy 78 81 88 89 

Precision  78 81 88 89 

Recall 78 81 88 89 

F1-Score 78 81 88 89 
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It is seen from Figures 4 and 5, that the model is underfitting which may be due to 

limited input data since in Thin–ICACSP algorithm the total number of independent com-

ponents extracted were only 2 instead of 5 (due to reduced number of channels), so that 

singular value decomposition can be performed. The performance metrics although low 

compared to the whole dataset, however show an equal performance. This shows that 

each channel has contributed to the features and hence the acquisition system can be used 

in switched modes if needed with equal distribution of channels on the left and right hem-

ispheres. 

4. Conclusions 

The objective of the current study was to investigate the spatial conservation of fea-

tures in each channel. The data for four classes upper limb movement, namely Right/Left 

hand clenching and Right/Left arm raising, acquired from EEG/FNIRS system was used 

in this study. The classification was done using a CNN+BiLSTM model. This data was 

halved with each set containing equal channels on left and right hemispheres. Results 

show that a redundancy in EEG data could improve the classification. Although this 

method has shown a lower performance than using the entire data for classification, the 

performance metrics show that the two sets of data show an equal performance explaining 

that, each of the channel preserves the features (since they are arranged along the motor 

cortex). The limitation can be overcome with increasing the input size by augmentation 

methods or using models that can handle a smaller dataset. This will be further explored 

in future works with other models or hyperparameter tuning. 

Author Contributions: S.R. contributed to the data processing and model development, D.B.T. su-

pervised the works, L.C.A. contributed in preparation of manuscript and model execution. All au-

thors have read and agreed to the published version of the manuscript. 

Funding:  

Institutional Review Board Statement:  

Informed Consent Statement:  

Data Availability Statement: All data used in this study can be found in 

https://figshare.com/search?q=EEG-fNIRS+hybrid+SMR+BCI+data. 

Conflicts of Interest: The authors declare no conflict of interest. 

References 

1. Cui, X.; Bray, S.; Bryant, D.M.; Glover, G.H.; Reiss, A.L. A quantitative comparison of NIRS and fMRI across multiple cognitive 

tasks. Neuroimage 2011, 54, 2808–2821. https://doi.org/10.1016/j.neuroimage.2010.10.069. 

2. Pfurtscheller, G.; da Silva, F.H.L. Event-related EEG/MEG synchronization and desynchronization: basic principles. Clin. Neu-

rophysiol. 1999, 110, 1842–1857. https://doi.org/10.1016/S1388-2457(99)00141-8. 

3. Fazli, S.; Mehnert, J.; Steinbrink, J.; Curio, G.; Villringer, A.; Müller, K.-R.; Blankertz, B. Enhanced performance by a hybrid 

NIRS–EEG brain computer interface. Neuroimage 2012, 59, 519–529. https://doi.org/10.1016/j.neuroimage.2011.07.084. 

4. Thiyam, D.B.; Cruces, S.; Rajkumar, E.R. ThinICA-CSP algorithm for discrimination of multiclass motor imagery movements. 

In Proceedings of the IEEE Region 10 Conference (TENCON)—Proceedings of the International Conference, Singapore, 22–25 

November 2016. 

5. Buccino, A.P.; Keles, H.O.; Omurtag, A. Hybrid EEG-fNIRS asynchronous brain-computer interface for multiple motor tasks. 

PLoS ONE 2016, 11, e0146610. https://doi.org/10.1371/journal.pone.0146610. 

6. Hasan, M.A.H.; Khan, M.U.; Mishra, D. A Computationally Efficient Method for Hybrid EEG-fNIRS BCI Based on the Pearson 

Correlation. Biomed. Res. Int. 2020, 2020, 1838140. https://doi.org/10.1155/2020/1838140. 

7. Shin, J.; von Lühmann, A.; Kim, D.-W.; Mehnert, J.; Hwang, H.-J.; Müller, K.-R. Simultaneous acquisition of EEG and NIRS 

during cognitive tasks for an open access dataset. Sci. Data 2018, 5, 180003. https://doi.org/10.1038/sdata.2018.3. 

8. Shelishiyah, R.; Thiyam, D.B. Performance Analysis of Hybrid–BCI Signals Using CNN for Motor Movement Classification. 

Trait. Du Signal 2024, 41, 2143–2152. https://doi.org/10.18280/ts.410442. 

9. Thiyam, D.; Cruces, S.; Olias, J.; Cichocki, A. Optimization of Alpha-Beta Log-Det Divergences and their Application in the 

Spatial Filtering of Two Class Motor Imagery Movements. Entropy 2017, 19, 89. https://doi.org/10.3390/e19030089. 



Eng. Proc. 2024, 6, x FOR PEER REVIEW 7 of 7 
 

 

10. Margaret, M.J.; Banu, N.M.M. Performance analysis of EEG based emotion recognition using deep learning models. Brain-Com-

put. Interfaces 2023, 10, 79–98. https://doi.org/10.1080/2326263X.2023.2206292. 

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual au-

thor(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to 

people or property resulting from any ideas, methods, instructions or products referred to in the content. 


