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Abstract: Analog computing had its prime between the 1960 and 1970 years. With the raise of pow-

erful digital computers analog computing using transistor and OPAMP circuits vanished nearly 

completely, but gained an increasing interest in recent years again. In this work, we will consider in 

particular analog ANN that are considered as co-processors for digital systems. We will show that 

the training result of an ANN using digital algorithms can be transferred on analog transistor cir-

cuits. But this process is still a challenge and can fail. So we discuss the limitations and possible 

solutions to generate and create analog ANN (AANN). 
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1. Introduction 

For decades signal processing was performed with analog electronics, including the 

era of analog computers, e.g., used for solving differential equations. In the last five dec-

ades, most analog circuits were substituted by digital electronic systems. Artificial Neural 

Networks (ANN) were originally inspired by analog systems, and implemented originally 

with analog electronics, but limited to one perceptron. Today they are computed by dis-

cretized digital computers. In this work, analog ANN (AANN) should be considered as 

co-processors and investigated with respect to their digital counterparts. 

The motivation of this work is manifolded. Considering highly miniaturized and em-

bedded sensor nodes based on digital silicon electronic (e.g., by using a microcontroller), 

providing less than 20 kB RAM and integer arithmetic only, computations of ANN are 

possible by transforming floating-point arithmetic models to scaled integer models with-

out loss of accuracy (details can be found in [7]). But from a resource point of view with 

respect to digital logic, the computation of a fully connected ANN with N nodes requires 

roughly estimated about N2*k transistors for storage (k is about 4–6) and M transistors for 

8-bit arithmetic and code processing logic (M is about 10·103–100·103). A weighted analog 

electronics summer circuit requires l + 1 resistors and a difference amplifier with about 4–

8 transistors (at least 2). An approximated non-linear transfer function, e.g., the sigmoid 

function, can be built from at least two transistors [1], and typically less than 20 transistors 

[2] if the gradient of the function is computed, too. The hyperbolic tangents function can 

be implemented with only two diodes [3]. Such small circuits are well suited for printed 

(organic) transistor electronics replacing more and more silicon electronics, but still limit-

ing circuits to a size of about 100 transistors and posing reduced stability, reproducibility, 

and statistical variance (of the entire circuits). 
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In our work we address the following research questions to the computational ANN 

sub-domain: 

1. Can AANN be trained with a digital node graph and floating point arithmetic per-

forming gradient-based error optimization and finally be converted to an analog cir-

cuit approximation (assuming ideal operational amplifiers)? 

2. Can AANN be trained with a digital node graph and floating point arithmetic per-

forming gradient-based error optimization and finally be converted to an analog cir-

cuit approximation assuming non-ideal circuits, especially with transistor-reduced 

circuits? 

3. Are organic transistors suitable? 

The implementation and approximation error of simple non-linear activation func-

tions using transistor electronics are investigated and discussed. Instead using real analog 

electronics, we will substitute the circuits by a simulation model using the spice3f simula-

tor [8], particularly the ngspice version [9]. We will consider different model abstraction 

levels, starting with ideal operational amplifier (voltage controlled voltage sources), then 

using approximated real OPAMP models, and finally introducing transistor circuits with 

models of organic transistors [6]. 

The next sections introduce the analog artificial neural network architecture and its 

electronic circuits with a short discussion of limitations. A short introduction in the digital 

twin ANN is given with modifications necessary for the digital.analog transformation 

process. An experimental section follows which applies the proposed transformation pro-

cess to the IRIS benchmark dataset. Finally, the results are discussed and summarizing the 

lessons learned. 

2. Analog Neural Networks 

With respect to analog computing, we have to distinguish and consider: 

• Different transistor technologies, e.g., Bipolar, JFET, OFET/OTFT, OECT; 

• Operational amplifier (OPAMP) circuits with a minimal number of components 

(transistors); 

• Non-linear transfer functions, e.g., logistic regression (sigmoid) or hyperbolic tan-

gents, and their implementation with a minimal number of components; 

• Transfer functions and characteristic curves of OPAMP/sigmoid circuits 

• A composed neuron (perceptron) circuit; 

• A full ANN. 

We will start for sake of simplicity with traditional bipolar transistor circuits. The 

minimal number of transistors for an OPAMP and the sigmoid function is three without 

compromising usability, easy design procedure, and stability. 

The circuit for a three-transistor OPAMP is shown in Figure 1 posing a nearly linear 

transfer curve (with hard clipping), and a similar circuit for the smooth clipping non-lin-

ear sigmoid function implementation in Figure 2. Both circuits base on a differential NPN 

transistor pair, followed by an current and voltage amplifying PNP transistor or a current 

amplifying NPN transistor, respectively. To achieve an output voltage range of nearly 

[−10 V,10 V], the power supply of the OPAMP3 circuit is set to [−10 V,15 V]. 
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Figure 1. OPAMP3 circuit (three transistor operational amplifier) using commonly used NPN and 

PNP bipolar transistors. 

 

Figure 2. SIGMOID3 circuit (three transistors) implementing the sigmoid function (output range 0–

3 V) using commonly used NPN bipolar transistors. The input resistor determines the k factor (sen-

sitivity or x-range scaling). 

The sigmoid three-transistor circuit has different x- and y-scaling compared with the 

mathematical function, but conforms with high accuracy to the scaled mathematical func-

tion, as shown in Figure 3. The x-scaling can be set by the input resistor multiplication 

factor k. The y-scale is always approximately in the value range [0.05 V,2.9 V]. The SIG-

MOID3 circuit needs a slightly odd power supply [−1 V,3.7 V]. 

 

Figure 3. Plot of analog SIGMOID3 (y) output and mathematical (sig) function with k = 50, sigmoid 

x-scaling = 0.7 and y-scaling = 2.9. 
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Having defined the elementary cells OPAMP3 and SIGMOID3 of a neural network 

we can compose neurons (one perceptron), layers of neurons, and entire networks. An 

ANN is described by the layer-network structure and parameters (weights, bias). Weights 

and bias values can be positive or negative. In principle, a common difference amplifier 

can be used. But we will have commonly more than one negative and positive input, mak-

ing the parametrization of such circuits difficult (negative and positive gain can not be 

indecently controlled). Therefore, we split the input path of a neuron into two paths, one 

for negative weights and negative bias (if any), and one for positive weights and bias (if 

any), finally merged by a unity gain difference amplifier. The entire architecture of a neu-

ron is shown in Figure 4. 

 

Figure 4. Single perceptron (neuron) circuit using one OPAMP3 circuit for all negative weights and 

negative bias, one OPAMP3 circuit for positive weights and positive bias (mutual exclusive), one 

difference OPAMP3 circuit combining both temporary outputs, and finally applying the sigmoid 

function. 

Due to the current-controlled current-source model of a bipolar transistor and cur-

rent flows from base to emitter/collector the gain of such a simplified OPAMP will be 

lower as compared with the gain of a mathematical ideal OPAMP. This gain mismatch 

(representing the weight of a neuron) requires a correction of the input resistor with a 

function depending on the original computed input resistor ri value in relation to the feed-

back resistor rf: 
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Additionally, there is a significant output offset of such simplified OPAMP circuit 

(up to 3 V), which must be compensated by a feeding a compensation current flow via a 

resistor into the inverting input node. The offset voltage depends on the feedback resistor 

value and the accumulative (parallel) resistor of all input resistors connected to the invert-

ing input node. The dependency is extended if the non-inverting input is not grounded 

(as in the case of the difference amplifier, but fortunately having constant gain and resistor 

networks). 
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Assuming a fixed feedback resistor of an OPAMP rf, e.g., 100 kΩ, an input resistor of 

the inverting OPAMP node is computed by: 
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3. Transformation Methods 

An analog circuit is basically an undirected mesh graph of current nodes, i.e., an elec-

tronic circuit has no real dedicated input and output ports. A digital feed-forward neural 

network, in contrast, is a directed graph of functional nodes. There are basically two ana-

log architectures which must be distinguished by a digital-to-analog transformation pro-

cess: 

1. Circuits with ideal OPAMPs and transfer functions (sigmoid), i.e., a theoretical and 

mathematical model of a neuron, which can use original ANN models and training 

methods and a direct digital-to-analog mapping model; 

2. Circuits with non-ideal OPAMPs and transfer functions requiring modified models 

and training algorithms and an advanced digital-to-analog mapping model. 

The first approach can be sub-divided into unconstrained ideal OPAMP and nearly-

ideal but constrained real OPAMPS. An ideal OPAMP is characterized by an infinite open 

loop gain and infinite input and output value ranges. A real OPAMP has a finite high open 

loop gain (>100,000), but limited output value ranges, given by the supply voltages, e.g., 

[−10 V,10 V]. The digital-to-analog transformation of ideal OPAMP circuits is trivial and 

not further considered in this work. The transformation of real OPAMP circuits or non-

ideal OPAMP circuits is a challenge. 

The challenges are: 

1. Limited open loop gain (50–100) creating a limit of the weights (<50); 

2. Intermediate values can exceed the output range of OPAMPs and clipping occurs; 

3. The input- and output-range of non-linear transfer functions (e.g., sigmoid) is differ-

ent from the mathematical version. 

4. Real OPAMP circuits pose non-linearity (distortion) and highly relevant output offset 

voltages (Δ). 

5. Composed circuits with bipolar transistors pose complex side effects and further de-

viation from ideal OPAMP circuits due to the current-controlled current-source op-

erational model of such transistors. 

To reflect the limitations and deviation of reduced transistor circuits compared with 

ideal OPAMP models, the neuron architecture in the digital model must be modified, as 

shown in Figure 5. Additional clipping and scaling blocks are added to the weighted sum-

mation function and the non-linear sigmoid transfer function. Due to the limited open 

loop gain of the considered OPAMP3 circuit, weight parameter clipping is added, too. 

The ANN is trained with scaled and normalized data by using the digital modified 

network model and commonly available training algorithms, e.g., ADAM, SGD, and so 

on. The intermediate value and weight parameter clipping introduces distortion in the 

training process, but results commonly still in a satisfying model parameter optimization 

and prediction error minimization. We assume a 1:1 digital-analog value mapping, i.e., a 

digital (mathematical) value 1 is corresponding to a voltage of 1 V. 

The clipping parameters and the x-scaling of the transfer functions must be chosen 

carefully. In model architecture (a) even if there is an output clipping comparable to the 

electronic circuit behavior, there can be intermediate value overflows in one or both 

weight amplification branches. Higher mathematical values are not an issue for digital 

computations, but with a 1:1 digital-analog mapping the absolute limits are given by the 

power suppüly voltages of the transistor circuits. 
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Figure 5. Modified digital neuron architectures with clipping and scaling (a) Simplified (b) With 

separate negative and positive weight paths. 

Therefore, the non-linear sigmoid function should be highly sensitive (i.e., low k val-

ues and high x-scaling). But deviations of analog circuits like offset voltages can shift the 

transfer curve to their 0/1 boundaries resulting in saturated nodes not present in the digi-

tal model. A suitable compromise must be found on an iterative base. 

The analog sigmoid function has a fixed output value range of about [0 V,3 V]. To 

reduce the risk of intermediate network values higher than the clipping range, the digital 

model is trained with a sigmoid value range [0,1], finally reducing all weights connected 

to the output of a sigmoid function by a facto of three. 

We used the JavaScript ConvNetJS software framework ([11], consisting of one file) 

to apply our modifications. ConvNetJS provides advanced trainers and a broad range of 

network architectures, but is still very compact and easy to maintain. The main modifica-

tion was the replacement of a commonly used practice to express the gradient function g 

(of the transfer function f) as a function of the original transfer function, e.g., in the case of 

the sigmoid function y = sigmoid(x) this is y(y − 1), i.e., computing the gradients from the 

output values y. Instead, we modified the gradient computation by computing the gradi-

ent as a function of the input x. Finally, we added weight (filter) and output clipping. 

The analog circuit is directly synthesized from the trained digital model. The synthe-

sizer aanngen has to perform: 

• (spice) net-list generation, 

• rescaling, 

• resistor computation from weight and bias parameters under amplification correc-

tion and connecting them to the appropriate sub-circuits (OPAMP3 OPN/OPP sub-

circuits for negative and positive weights/bias, respectively), 

• adding and connecting sigmoid analog sub-circuits, 
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• adding offset correction resistors based on computed circuit components. 

The layer structure, weight and bias parameters from the trained digital model is 

exported in JSON format and processed by the synthesizer program. Currently, the syn-

thesizer creates a ngspice net-list with simulation control statements testing the analog 

circuit with test data. 

4. Example: Benchmark IRIS Dataset Classification 

An ANN with a layer structure of [4,3,3] neurons and scaled sigmoid transfer func-

tions were trained with the benchmark IRIS data set consisting of 151 data instances. Be-

cause this study is only a proof of concept and comparison of a digital and an analog 

circuit model, training and test were performed with the entire data set. 

The input vector x consists of four physical parameters (length, width, petal length 

and width), which are normalized to the range [0,1] independently, finally correlating to 

the analog voltage ranges [0 V,1 V]. The three species classes are one-hot encoded (y). 

There is no soft-max layer at the output of the ANN model due to a lack of analog circuits 

implementing an interconnected multi-node function accurately. The first input layer is 

not present in the analog circuit (it is a pass-through layer). 

The training was performed with the ADAM optimize, α = 0.02, γ = 0.5, and a batch 

size of 5. The filter clipping was set to 5, the output scaling (of the summation function) 

was set to [−10,10]. A typical model parameter set achieved after 10,000 single training 

iterations (by selecting training instances randomly) is shown in Figure 6. The classifica-

tion results of the (clipped) digital model compared with the results from analog circuit 

are shown in Figure 7. The circuit was simulated by using ngspice with altered settings of 

the input vector x. 

The results shows that the transformation process from a digital to an analog model 

succeeded. The average classification error increased (from 3% to 10%), but the overall 

accuracy of the analog model is still good and comparable to the digital model. Due to the 

limitations of the used simple and minimalistic circuits the results are better than ex-

pected. Offsets and gains deviations were not fully compensated in the analog model. 

 

 

Figure 6. Parameters of the digital IRIS classification model. 



Eng. Proc. 2024, 5, x FOR PEER REVIEW 8 of 16 
 

 

 

Figure 7. Comparison of prediction results of the (modified and clipped) digital and the analog cir-

cuit model (Classes: A = setosa, B = versicolor, C = virginica). 

5. Discussion 

Due to the non-ideal analog circuit behavior compared with mathematical ideal op-

erational amplifiers there is an increasing accumulative error with an increased output 

deviation and prediction errors, finally reducing the safety margin in classification. The 

non-ideal behavior bases on: 

1. Output offset of transistor circuits (OPAMP3) and offset correction coefficient base 

on resistors networks of entire sub-circuit; 

2. Lowered gain (which must be corrected) on inverting input and gain correction co-

efficient depends on resistor networks; 

3. Limited gain due to low open gain factor; 

4. Drift due temperature variation; 

5. Transistor parameter variations (e.g., hfe); 

6. Deviation of the SIGMOID3 transfer curve from the mathematical (scaled) sigmoid 

function. 

The y-scaling of the sigmoid is fixed, but the x-scaling can be freely chosen. A small 

x-scaling decreases the output values of the summation circuit, but increase the sensitivity 

to offset errors. A larger x-scaling results in the opposite relationship. 

Offsets and gains deviations were not fully compensated in the analog model using 

approximated and simplified calculation models derived from simulation, but the analog 

model is still usable. But with an increasing number of layers (and neurons per layer), the 

value errors accumulates and can lower the model accuracy until uselessness. 

6. From Silicon to Organic Printed Electronics 

The future goal of this work is to transform and implement digital computation in 

analog organic printed electronics. We can distinguish different organic transistor tech-

nologies: 
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1. Organic Thin-film Field-effect Transistors (OFET,OTFT) [6] 

2. Organic Electrochemical Transistors (OECT) [10] 

We started with silicon bipolar transistors to show the principle possibility to trans-

form digital to analog models. We were able to create neural circuits sufficiently close to 

the digital model behavior with a minimal number of transistors. The next step is the re-

placement of BJT transistors with voltage-controlled JFET transistors and finally with 

OFET and OECT transistors. But some selected IV curve characteristics show the next sig-

nificant challenge. The JFTE and BCT curves are comparable with respect to steepness 

(gain) and JFET circuits are well understood. The OFET curve [6] shows a totally different 

behavior with respect to steepness and scale. In [10] the authors presented OECT transis-

tors with a much more promising behavior maybe suitable to create OPAMP3 and SIG-

MOID3 circuits. 

 

Figure 8. Simulated transistor IV curve characteristics (VCE = VDS = 10 V) for different transistor tech-

nologies: (a) Silicon NPN-BJT (b) Silicon N-JFET (c) p-OFET (spice model from [6]). 

Assuming a typical size of organic printed transistors of about 200 × 200 μm [12], the 

circuit presented in this work with 66 transistors and 75 resistors would cover an area of 

about 2 × 2 mm, sufficiently small to be integrated in material-integrated sensor nodes 

[13]. 

7. Conclusions 

We could show that digital ANN models can be transformed into analog circuits with 

minimal transistor counts. The presented analog transistor circuits OPAMP3 and SIG-

MOID3 are elementary cells and building blocks for neurons and neural networks. Each 

sub-circuit requires only 3 transistors. We tested and evaluated out approach with the IRIS 

benchmark dataset. We found that the digital model must be modified to reflect real circuit 

clipping (saturation) and limited open loop gain (limiting teh maximal weights). The pre-

sented AANN example circuit consists of 16 OPAMP3 components and 6 SIGMOID3 com-

ponents, in total 66 transistors and 75 resistors. Although, the average classification error 

increased from 3 to 10%, the overall model accuracy is preserved. 

To conclude: The digital-to-analog transformation of ANN is possible, but the imper-

fections and correction of the simplified transistor circuits are limiting factors, especially 

for larger networks. We propose to use surrogate ML models of the sub-circuits for differ-

ent parameter settings and IO characteristics derived and trained from simulation and 

integrated in the digital model training. The seems inevitable if OFET and OECT transistor 

technologies with much higher degree of imperfections ares used. 
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Figure A1. AANN circuit (for IRIS dataset classification). 
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Figure A2. (ng)spice model of the AANN circuit synthesized from a digital trained model. 
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