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Abstract: In various engineering applications, model-based fault diagnosis techniques are used as 

analytical models to reduce the computational cost associated with existing empirical models. Due 

to their robustness, Bayesian Network-based methods have become particularly popular among 

other model-based techniques. This article introduces a model-based fault diagnosis approach that 

combines Bayesian Network and Extended Kalman Filter to detect faults in a vehicle’s lateral dy-

namic system. Residual values of yaw rate, wheel slip rate, and steering angle are calculated by 

comparing sensor data with data obtained from analytical models. The vehicle’s speed is estimated 

with the Extended Kalman Filter (EKF) using GPS and accelerometer data, and potential errors in 

the wheel speed sensors are detected. In case of an incorrect wheel speed measurement, detection 

occurs, and the speed value obtained from sensor fusion is transferred to the dynamic model. The 

proposed method is first modeled and tested in the Matlab/Simulink environment. Subsequently, 

the C++ implementation in ROS (Robot Operating System) which also contains the communication 

structure between the vehicle and algorithm is completed. Furthermore, in order to display the er-

rors visually in real-time tests, a Human-Machine Interface (HMI) is developed. Results of the real-

time tests indicate clearly that the designed algorithm can detect errors with high accuracy. 
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1. Introduction 

As a consequence of innovative fault detection and diagnosis techniques the safety 

and reliability of technical processes have advanced [1–4]. Recently, model-based fault 

detection techniques have become a popular choice because of their analytical redun-

dancy [5]. In these techniques, the quantity calculated from the analytical models is com-

pared with the measured quantity by using analytical redundancy [6]. Not only does 

model-based fault detection provide reliable results thanks to its analytical redundancy, 

it is also advantageous in terms of cost since it does not cause any additional cost or weight 

burdens. That being said, the importance of model choice and how updates are made 

should be kept in mind. As a result, these methods play an important role in increasing 

the security and reliability of technical processes. Fault trees are another commonly used 

method for diagnosing faults. In this method, the user is asked a series of questions con-

taining possible fault symptoms and the goal is to try and determine the cause of the fault 

according to the user’s answers to these questions [7,8]. Although fault trees are a practical 

and user-friendly approach, they have some significant drawbacks. For example, cases 

where judgment about a particular failure cause is uncertain are not addressed by the 

model. Additionally, the fixed nature of the tree prevents the integration of expertise or 

previous knowledge into the diagnostic process and can make it difficult to detect faults 

with multiple symptoms [9]. Signal-based fault detection systems are another alternative 
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and effective method used to detect faults in complex systems [10]. This method detects 

faults by analyzing the measured output signals of the system. Faults in the system are 

usually associated with and detected through changes in the properties of the measured 

signals. Signal-based fault detection does not rely on mathematical models to realize fault 

diagnosis, thus the difficulty of dealing with the complexity and uncertainty of system 

modeling is avoided. In [12], the authors used model-based and signal-based approaches 

to perform fault diagnosis on an induction motor and concluded that although the model-

based approach is more difficult to implement due to the complexity of the models used 

it performs better than the signal-based approach. 

In this paper, a model-based fault detection algorithm is developed for the lateral 

dynamics of an autonomous vehicle with non-constant longitudinal velocity. The devel-

oped fault detection algorithm includes both Bayesian Network and Extended Kalman 

Filter (EKF). Since the dynamic model used in the algorithm works with the integration 

of vehicle speed data, even a single incorrect measurement of speed data can disrupt the 

dynamic structure of the entire system. This problem is mitigated by using the EKF struc-

ture. Six residual values are calculated in the fault detection algorithm. The first three re-

sidual values are calculated by comparing the yaw speed measured by the gyroscope with 

the yaw speed values obtained from the front wheels, rear wheels, and the dynamic bicy-

cle model, respectively. Two additional residual values are calculated by comparing the 

slip rate obtained from sensor measurements of the right and left wheels with the slip rate 

obtained from the tire model. The final residual value is calculated by taking the difference 

between the value obtained from the steering angle sensor and the steering angle calcu-

lated from the steering angle model. If there is an incorrect wheel speed measurement, 

this is detected, and the speed value obtained from sensor fusion is used in the dynamic 

model instead. Threshold values of all calculated residuals are determined using datasets 

collected from an autonomous testing vehicle. Depending on whether the residuals ex-

ceed the threshold value, the coefficients of the Bayesian Network are dynamically up-

dated to decide which sensor or actuator is faulty. The results show us that robust and 

accurate fault detection is achieved using Bayesian Network and EKF. Visualization of the 

system and occurring faults are achieved in a user-friendly manner by incorporating an 

HMI interface to the system. 

2. Fault Diagnosis Structure 

2.1. Sensors Used to Obtain Residuals 

In this paper, residual values for yaw rate, slip rate and steering angle are obtained. 

In Table 1, the symbols of both the values included in the analytical models used and the 

sensors from which the resulting measurements were made are given. 

Table 1. Symbols and explanations of parameters measured with the sensors. 

Symbol Explanation 

𝑉𝐹𝐿 Front Left Wheel Speed 

𝑉𝐹𝑅 Front Right Wheel Speed 

𝑉𝑅𝐿 Rear Left Wheel Speed 

𝑉𝑅𝑅 Rear Right Wheel Speed 

𝛿 Steering Wheel Angle 

�̇� Yaw Rate 

2.2. Residual Models 

In this study, six residual values that enable fault diagnosis are obtained from six 

different models. Details of these models are given in [13]. Three of these models are used 

to calculate the yaw rate. Two models are used to calculate wheel slip rate, and the last 

remaining model is used to calculate the steering angle. The linear bicycle model is first 
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used to calculate the yaw rate. The state-space equation of the linear bicycle model is 

shown in Equation (1) [14]: 
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Apart from the bicycle model, the yaw rate based on the front and rear wheel speed 

models is also calculated. These models are given in Equations (2) and (3) and shown 

below [15]: 

�̇� = (𝑉𝐹𝑅 − 𝑉𝐹𝐿) 𝑏𝑓 ⁄  (2) 

�̇� = (𝑉𝑅𝑅 − 𝑉𝑅𝐿) 𝑏𝑟  ⁄  (3) 

In calculating the wheel slip rate, the relationship depending on whether the front or 

rear wheel is driven is used [14]. This relationship is shown in Equation (4): 

𝑆 =  
𝜔𝑢𝑛𝑑𝑟𝑖𝑣𝑒𝑛 − 𝜔𝑑𝑟𝑖𝑣𝑒𝑛

𝜔𝑢𝑛𝑑𝑟𝑖𝑣𝑒𝑛

 (4) 

Assuming linear conditions, the wheel slip rate can also be calculated using Equation 

(5) [15]: 

𝐹𝑥 =
1

2
𝑚𝑎𝑥 = 𝐶𝑥𝑆 (5) 

Finally, Equation (6) is used to calculate the steering angle: 

�̂� =
𝑙 ⋅ 𝑖𝑠𝑡
𝑉𝑥

�̇� (6) 

2.3. Fault Diagnosis Plan 

The three residual values related to the yaw rate are calculated by subtracting the 

yaw rate values obtained using the analytical models from the yaw rate measurements 

obtained from the sensors: 

𝑅1 = �̂̇�𝑚𝑜𝑑𝑒𝑙1 − �̇�𝑠𝑒𝑛𝑠𝑜𝑟 

𝑅2 = �̂̇�𝑚𝑜𝑑𝑒𝑙2 − �̇�𝑠𝑒𝑛𝑠𝑜𝑟  

𝑅3 = �̂̇�𝑚𝑜𝑑𝑒𝑙3 − �̇�𝑠𝑒𝑛𝑠𝑜𝑟  

(7) 

Here, model1, model2, and model3 represent the bicycle, front wheel, and rear wheel 

speed models, respectively. When the slip ratios obtained from the left and right wheel 

speeds (Equation (4)) are subtracted from the slip ratios obtained by the force relationship 

of the driven wheels on both sides of the vehicle (Equation (5)), two more residuals can be 

calculated: 

𝑅4 = 𝑆𝑓𝑜𝑟𝑐𝑒 𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 − 𝑆𝑟𝑖𝑔ℎ𝑡 𝑤ℎ𝑒𝑒𝑙 𝑠𝑝𝑒𝑒𝑑𝑠 

𝑅5 = 𝑆𝑓𝑜𝑟𝑐𝑒 𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 − 𝑆𝑙𝑒𝑓𝑡 𝑤ℎ𝑒𝑒𝑙 𝑠𝑝𝑒𝑒𝑑𝑠 
(8) 

The final residual value is obtained by subtracting the steering angle sensor value 

from the steering angle value obtained through the analytical model shown in Equation 

(6): 

𝑅6 = �̂�𝑚𝑜𝑑𝑒𝑙 − 𝛿𝑠𝑒𝑛𝑠𝑜𝑟  (9) 

A total of 10 faults have been determined that these residuals can be used together 

with the Bayesian network to achieve fault diagnosis. Six of these faults are sensor faults 

and 4 of them are physical faults. These are presented in Table 2 below: 
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Table 2. Faults Table. 

Fault Explanation 

𝐹1 Front Right Tire Physical Fault 

𝐹2 Front Left Tire Physical Fault 

𝐹3 Rear Right Tire Physical Fault 

𝐹4 Rear Left Tire Physical Fault 

𝐹5 Front Right Tire Sensor Fault 

𝐹6 Front Left Tire Sensor Fault 

𝐹7 Rear Right Tire Sensor Fault 

𝐹8 Rear Left Tire Sensor Fault 

𝐹9 Yaw Rate Sensor Fault 

𝐹10 Road Wheel Angle Sensor Fault 

The directed graph that depicts the relation between the faults and residuals is pre-

sented in Figure 1 below. 

 

Figure 1. Directed graph of the fault diagnosis structure. 

2.4. Dynamic Bayesian Network 

In this study, failure probabilities are calculated using a Bayesian network. Depend-

ing on the structure used, when any residual value is active, the probabilities of faults 

related to it are dynamically updated. As shown in Figure 1, there are faults that affect 

each residual value. The logic and detailed explanation of the created dynamic Bayesian 

network are explained in a previous publication of the authors [11]. Table 3 shows which 

faults are active for certain residual values. 

Table 3. The faults and the corresponding residuals. 

𝑹𝟏 𝑹𝟐 𝑹𝟑 𝑹𝟒 𝑹𝟓 𝑹𝟔 Faults 

1 0 0 0 0 1 𝐹10 

1 0 1 0 1 0 𝐹4 

1 1 0 1 0 0 𝐹1 

1 1 0 0 1 0 𝐹2 

1 0 1 1 0 0 𝐹3 
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1 0 1 0 1 1 𝐹8, 𝐹10 

1 1 0 0 1 1 𝐹6, 𝐹10 

1 1 0 1 0 1 𝐹5, 𝐹10 

1 0 1 1 0 1 𝐹7, 𝐹10 

1 1 1 0 0 1 𝐹9, 𝐹10 

2.5. Extended Kalman Filter 

One of the inputs of the bicycle model is the vehicle speed calculated from the speed 

data from the wheel sensors. Therefore, a faulty speed measurement from any wheel will 

cause the bicycle model to miscalculate the yaw rate. In this case, the fault diagnosis algo-

rithm will determine that the fault is in the yaw rate, when in reality it is mainly caused 

by the speed data. In order to solve this problem, the fault detection algorithm obtains the 

speed data of the vehicle by combining the speed data received from the GPS sensor and 

the accelerometer data received from the IMU sensor with the help of Extended Kalman 

Filter (EKF). The general structure of the EKF is shown in Figure 2. At this point, this com-

bined speed data should be used instead of the speed value from the wheel speed sensors 

to prevent incorrect calculation of the yaw rate obtained by the bicycle model. 

 

Figure 2. EKF structure. 

2.6. ROS Structure 

The Bayesian Network structure explained in Section 2.4 has been implemented and 

tested in an autonomous test vehicle both in a simulation and real-world. While doing 

this, the Melodic version of ROS has been used on Ubuntu v18.04. 

A ROS package containing the Fault Detection node has been created to obtain the 

probabilistic output of each fault. Accordingly, functions have been implemented to cal-

culate the residual values at the end of each cycle of the node. The sensor readings re-

quired to be used in the calculation of these residual values are obtained by subscribing 

to the topic of the associated sensor. Following the calculation of the residual values, these 

values become the input of another function whose duty is to create the Bayesian Network 

and then calculate the failure probabilities. Finally, these probabilities are published to the 

Bayes topic by creating a message type that makes it possible to visualize each of the faults. 

The applied ROS structure is visually summarized in Figure 3. In the next section, the 

simulation system is explained in more detail. 
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Figure 3. ROS structure of the fault diagnosis algorithm. 

2.7. ROS Structure 

Human-Machine Interface (HMI) can be defined as software or hardware that pro-

vides the basic interaction between humans and vehicles via communicating through 

communication methods and protocols such as CAN and ROS. Modern HMIs are de-

signed to provide intuitive control, display systems and include a variety of functions 

such as entertainment, navigation and autonomous driving assistance systems. Addition-

ally, the user can observe some basic sensor outputs through the HMI. 

The HMI that has been developed consists of 4 main pages, grouped according to 

frequency of use and interrelatedness. The first page contains the main HMI page, which 

includes lane and road information, environmental obstacles, TSLR (Traffic Light and Sign 

Recognition) information, decision maker decisions and possibilities, a small navigation 

map, and ACC (Adaptive Cruise Control) controls (Figure 4). The second page is the in-

dicator page that shows the desired and actual speed and the actual and desired steering 

angles. The third page is the main map and navigation page (Figure 5) and finally there is 

the diagnostics page. The project has been developed using ReactJS technology. All data 

communication between the HMI and the vehicle is provided via ROS. 

 

Figure 4. HMI Main Page. 
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Figure 5. Fault Result. 

3. Test Scenarios 

Tests of the fault detection algorithm integrated into ROS have been carried out using 

real vehicle data. During the test, values were added to the data collected on the real ve-

hicle in a way that would cause a fault in the desired sensor at that moment. The test 

scenarios selected here are the right and left front wheel speed sensors, respectively. Here, 

one of the main reasons why faulty reading have been injected to the speed sensors is to 

demonstrate that the Bayesian Network can detect this situation when there is a fault in 

the speed sensors, and then the speed value obtained from the EKF starts to be used in-

stead of the speed value from the wheel speed sensor in the dynamic bicycle model. 

In order to perform fault detection, the threshold value of each residual has been 

determined. Real vehicle test data has been again used to determine this threshold value. 

By examining ten fault free datasets of the test vehicle, threshold values have been set for 

each residual value and these values are shown in Table 4. In cases where the calculated 

residual values exceed these threshold values, that residual value will be assigned as 1, 

and in cases where it does not exceed these thresholds, it will be assigned as 0. 

Table 4. Residual thresholds for each residual. 

Residual Threshold Value 

R1, R2, R3 0.2 rad/s 

R4, R5 0.02  

R6 0.4 rad 

3.1. Test Scenarios 

After integrating the fault diagnosis algorithm into the vehicle, we conducted tests in 

a controlled traffic-free area. While performing tests within the vehicle, we manipulated 

the incoming data to create fault scenarios and observe whether the algorithm functioned 

correctly. To test the algorithm, three fault scenarios are created. First, values for residuals 

R1, R2 and R4 are triggered, and it resulted in a fault on F1 which corresponds to the front 

tire. Then, the values for residuals R1-R2-R3 and R6 are triggered, and it indicated a fault in 

F9 which corresponds to yaw rate sensor. Finally, when values for residuals R1 and R6 are 

triggered, a fault in F10 which corresponds to the steering angle was observed. The fault 

results are shown in Figure 6 below. The time points at which each residual is triggered 

can be seen in Figures 7–9. 

Furthermore, in the algorithm design, we implemented an additional function to pre-

vent the system from faulting due to anomaly jumps in residual values, ensuring that the 

system would not go into fault mode before reaching a certain number of cycles. 
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Figure 6. R1-R2-R3 Residuals. 

 

Figure 7. R4–R5 Residuals. 
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Figure 8. R6 Residual. 

The faults have been determined based on Table 3. Additionally, these residuals and 

faults are also visible on the HMI as given in Figures 10–12, depending on the residual 

values. 

 

Figure 9. Right Front Tire Fault on HMI Screen. 



Eng. Proc. 2024, 6, x FOR PEER REVIEW 10 of 11 
 

 

 

Figure 10. Yaw Rate Fault on HMI Screen. 

 

Figure 11. Steering Angle Fault on HMI Screen. 

4. Results 

In this study, a model-based fault detection method with dynamically adjusted con-

ditional probability distributions is described. This proposed method uses both a Bayesian 

network structure and EKF. At this point, the vehicle’s speed data is obtained by combin-

ing the data obtained from the GPS sensor and IMU sensor with the help of EKF. If there 

is a faulty measurement from any wheel sensor, the speed data obtained with the help of 

EKF will be used instead of the wheel speed data, preventing the incorrect calculation of 

the yaw rate value via the bicycle model. The yaw rate measured by the gyroscope sensor 

has been compared with the yaw rates calculated by three analytical models (front wheel, 

rear wheel, and bicycle dynamic model). Apart from the yaw rate, the slip rate obtained 

using the measurements of the left and right wheels has been compared to the slip rates 

calculated by the wheel model for both the front and rear wheels. In addition, the value 

obtained from the steering angle sensor was compared with the steering angle calculated 

from the model. As a result of comparing these sensor and model values, six residual val-

ues have been obtained. Following the integration of the fault diagnosis algorithm into 

the vehicle, we conducted trials in a controlled, traffic-free environment. During these ve-

hicle-based tests, we deliberately manipulated incoming data to simulate fault scenarios 

and monitored the algorithm’s performance to ensure it operated correctly. As a result, in 
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real-time tests, the algorithm that use both the Bayesian network and EKF successfully 

detected faults related to the lateral dynamics of the vehicle and the results have been 

successfully displayed on the HMI. 
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