
Citation: Zhindon-Romero, A.;

Vargas-Rosales, C.; Rodriguez-Corbo,

F. Indoor RSSI Measurements for

Device-Free Target Sensing. Eng.

Proc. 2024, 1, 0. https://doi.org/

Published: 26 November 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Proceeding Paper

Indoor RSSI Measurements for Device-Free Target Sensing †

Alex Zhindon-Romero 1,‡, Cesar Vargas-Rosales 2,*,‡ and Fidel Rodriguez-Corbo 2,‡

1 Aeronautics and Astronautics Department, Massachusetts Institute of Technology, Cambridge, MA, USA.
azhindon@mit.edu

2 Tecnologico de Monterrey, School of Engineering and Science, Monterrey 64849, Mexico;
fidel.rodriguez@tec.mx

* Correspondence: cvargas@tec.mx
† Presented at The 11th International Electronic Conference on Sensors and Applications (ECSA-11),

26–28 November 2024; Available online: https://sciforum.net/event/ecsa-11.
‡ These authors contributed equally to this work.

Abstract: For applications such as home surveillance systems and assisted living for elderly care,
sensing capabilities are essential for tasks such as locating, determining the approximate position
of a person or identifying the status of a person (static or moving), since the effects caused by the
presence of people can be captured in the power received of signals in an infrastructure deployed for
these purposes. Human interference on the Received Signal Strength Indicator (RSSI) measurements
between different pairs of wireless nodes can vary depending on whether the target is moving or
static. To test these ideas, an experiment was conducted using four nodes equipped with the ZigBee
protocol in each corner of an empty 6.9 m × 8.1 m × 3.05 m room. These nodes were configured
as routers communicating to a coordinator outside of the room that instructed the nodes to send
back their pairwise RSSI measurements. The coordinator is connected to a computer in order to log
the measurements, as well as the time at which the measurements are generated. The code was run
for every iteration of the experiment, whether the target was static, moving or when the number
of targets was increased to five. The data was then statistically analyzed to extract the pattern and
other target relational parameters. There was also a correlation between the change of the pairwise
RSSI and the path described by the target when moving through the room. The data presented by
the results can aid with algorithms for device-free localization and crowd classification with a low
infrastructure cost for both and shed light into relevant characteristics correlated to path and crowd
size in indoor settings.
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1. Introduction

Localization of a person or object of interest is a critical problem in many applications,
involving the accurate determination of an object’s position in space. Precise localization is
essential for indoor autonomous systems, in-house navigation, and location-based services,
where incorrect positioning can lead to safety issues or inefficiencies. The rapid increase in
IoT devices has heightened the need for effective localization methods, as these devices
often interact in complex environments. Radiowave sensing offers significant advantages
for aided localization, as it can penetrate obstacles, perform well in low-light or harsh
weather conditions, and provide real-time data, enhancing the accuracy and robustness
of location-based systems. In a non-active object Device-free localization (DFL) [1], it is
possible to track or detect the presence and movement of a person or object without
requiring them to carry or wear any electronic devices. Instead, DFL leverages radio
frequency (RF) waves, to monitor disruptions or changes in the signal caused by the object
or person’s presence. This approach is highly relevant in scenarios where it may not be
feasible or convenient to equip individuals with tracking devices, such as in healthcare,
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security, and smart home environments. DFL is particularly useful in enhancing privacy,
reducing user dependency on devices, and enabling continuous monitoring in a non-
intrusive manner.

This system typically relies on a network of static nodes strategically placed within an
environment, which communicate to gather pairwise channel information, such as signal
strength or time-of-flight between nodes. The accuracy of the localization system heavily
depends on the degree of information available from these nodes. When more detailed
channel information is accessible, such as phase, or multiple signal paths, the system can
employ more sophisticated models that enhance precision for the localization. Conversely,
with limited data, simpler models may be used, often at the expense of accuracy, but with
the advantage of low cost devices.

Different types of measurements provide varying levels of information. Ultrawide-
band (UWB) receivers can measure the amplitudes, time delays, and phases of multipath
signals, offering detailed insights into both the static properties of the propagation en-
vironment and any changes that may signal the presence or movement of a person or
object. This rich data allows for precise tracking and environment mapping. In contrast,
narrowband receivers cannot distinguish individual multipaths and only provide aggregate
signal magnitude and phase information, making them less capable of capturing detailed
environmental changes or object movements compared to UWB systems. Received Signal
Strength (RSS) information, is a magnitude-only measurement that limits the ability to
pinpoint a person’s location with high accuracy. However, the simplicity and low cost of
RSS-based narrowband radios allow for more nodes to be deployed within a given budget,
which can improve overall localization performance through higher network density. Ad-
ditional signal metrics, such as polarization, can also provide further information about
the environment or objects within it, enhancing localization accuracy in specific scenarios,
though these metrics are less commonly used than traditional measurements like amplitude
and phase [2]. For indoor localization, RSS-aided systems have been explored in several
works, such as [1,3], where the RSS metric at 2.4 GHz is utilized for position estimation.
Sub-1 GHz bands have also been used in indoor environments, as demonstrated in [4],
where the authors adopt methods to mitigate errors caused by the multipath effect. They
also implement techniques to automatically recalibrate training data, ensuring accuracy is
maintained as the environment evolves. The tests were conducted in the 433.1 MHz and
909.1 MHz bands.

Another approach has leveraged the noise resilience of deep learning methods, as seen
in [5], where the authors design a sparse autoencoder network to automatically learn
discriminative features from wireless signals. Although stochastic modeling continues
to be a preferred approach for RSS-based localization methods, as seen in [6], model
refinement can be achieved through field measurements in various environments. In this
context, the present work introduces a measurement campaign for RSS data between
Zigbee devices in an indoor location (classroom). Several results are analyzed and the
characteristics of the setup environment are presented.

2. Measurement Setup

The measurement setup was conducted in an indoor environment, specifically a
classroom at Tecnologico de Monterrey. The setup involved five Arduino Mega devices,
each equipped with a shield and a Digi XBee 3 module. These Zigbee devices operated
at a frequency of 2.4 GHz with a transmitting power of 8 dBm. The chosen classroom
environment allowed for controlled experimentation of RSS-based channel information,
an image of the classroom environment can be seen in Figure 1.

The devices used for channel estimation consist of four units, each placed on top
of plastic chairs in the corners of the room. All four devices are battery-powered and
connected to the same Zigbee network, operating in a router role. This setup allows for
consistent channel measurements across the room, ensuring that the devices maintain a
reliable connection for data collection while eliminating the need for wired power sources.
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Outside the room, a fifth Zigbee device acts as the network coordinator and serves as the
receiver of all pairwise channel RSS information. This device is connected to a laptop,
and when commanded, it initiates the collection process. Each of the four devices inside
the room gathers RSS information from its peers and retransmits it to the coordinator.
The coordinator then acquires the complete vector of RSS values from all devices and
timestamps the data upon receipt, ensuring accurate and synchronized measurements
across the network.

(a)
(b)

Figure 1. Classroom environment setup (a) panoramic view (b) schematic and device location.

3. Discussion and Results

The tests were conducted across four different scenarios. First, a baseline for the
channel was established by gathering RSS information over approximately five minutes in
an empty room. In the second scenario, a test was performed with five people standing still
at the center of the room. Two additional tests involved walking in a circular path around
the room, starting near node 4. These walks were conducted at different speeds to collect
data relevant to the rate of change in RSS values as the object moved. Figure 2 is the RSS
information for each node vs the others as the baseline test.

The baseline measurements for all devices in Figure 2 showed RSS values ranging
from a maximum of −48 dBm to −59.15 dBm, with very low variance across all cases.
The maximum observed variance was 0.25 dBm, reflecting the stability of the signal in an
empty room with no moving objects.

Figure 2. Baseline case.

As shown in Figure 3, in this scenario, five people are standing still in the middle of the
room. The channel between the crossing nodes is significantly affected, with a mean RSS of
−73.99 dBm from node 2 to node 3, and −61.82 dBm from node 1 to node 4. The variances
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also increased, with a maximum observed variance of 10.63 dBm, specifically in the channel
between node 3 and node 2.

Figure 3. Five people standing still.

In the case of one person walking, the channel is selectively affected, as shown in
Figure 4. The starting point is near node 4, and consequently, the channel between node 4
and node 1 is the first to be impacted, with a drop in RSS to 79 dBm. As time progresses,
the other channels are also affected in line with the path of the movement. Both the mean
values and variances are affected along the object’s path, with the variance rising to a
maximum of 53.95 dBm in the worst case.

Figure 4. Walking track (slow).

Regarding speed estimation, this metric is highly dependent on the precision of the
tracking algorithm employed. Since the information received by the coordinator outside
the room comes in vector form, providing the complete pairwise RSS data, a compact
method for tracking the object’s speed without estimating position changes could use
the p-norm characterization of the received vector as complement information. In this
context, Figure 5 presents the p-norm of the received vector for three scenarios: the baseline,
a person walking in the room, and the same walking path at a higher speed after a few
seconds into the track.

As seen in Figure 5, there is a correlation in the p-norm pattern for the same walking
path, with a time compression when the object moves at a higher speed. This representation
can help fine-tune algorithms for speed determination as an aggregate result. A summary
of the results regarding the mean RSSI in dBm and the variance per link can be found in
Table 1.
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Figure 5. p-norm representation of 3 scenarios.

Table 1. Results Summary.

Baseline RSSI
(Mean/var)

Walking RSSI
(Mean/var)

Standing (5) RSSI
(Mean/var)

Zigbee 1 @ 2 −52.67/0.22 −53.16/1.99 −55.09/0.60
@ 3 −53.72/0.20 −55.11/7.14 −54.91/0.47
@ 4 −58.29/0.21 −62.20/49.01 −61.82/0.79

Zigbee 2 @ 1 −53.37/0.24 −53.55/2.07 −55.53/0.60
@ 3 −59.15/0.13 −59.76/1.85 −73.99/9.09
@ 4 −50/0 −55.89/16.91 −52.16/0.14

Zigbee 3 @ 1 −53.46/0.25 −55.13/8.63 −54.80/0.51
@ 2 −58.96/0.06 −59.38/3.57 −73.93/10.64
@ 4 −50.09/0.08 −53.13/1.37 −50.29/0.21

Zigbee 4 @ 1 −57.14/0.15 −60.44/53.95 −60.27/1.05
@ 2 −48/0 −54.27/16.42 −50.26/0.23
@ 3 −49.05/0.05 −51.51/1.29 −49.18/0.39

4. Conclusions

The present experiment successfully gathered valuable information regarding the
application of RSSI methodology to the device-free localization problem. The use of low-
cost Zigbee devices proved to be an effective approach for setup analysis, providing a
cost-efficient foundation for further exploration of localization techniques. Additionally,
the experiment highlighted the potential of these devices for supporting algorithms such
as Radio Tomographic Imaging (RTI) for precise localization. The observed correlation
between object presence and changes in the mean and variance of channel information
underscores the reliability of this approach. Furthermore, metrics like the p-norm of the
received signal vector were shown to be related to applications in determining object
speed, offering a useful tool for real-time tracking and motion analysis. These findings
suggest that Zigbee-based setups can play a critical role in advancing low-cost, effective
localization solutions.
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