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Abstract: Data-driven methods have emerged as indispensable tools for wind turbine prognosis, 

offering unparalleled insights into system health and performance monitoring. However, harness-

ing the full potential of these methods poses significant challenges, specifically when it comes to 

data complexity due to harsh conditions. This absolutely necessitates innovative approaches and 

less computationally intensive methods to simply and effectively navigate the inherent complexities 

in wind turbine data analysis. Accordingly, this study presents a novel approach to wind turbine 

state-of-health prognosis for maintenance purposes using a realistic high-speed shaft wind turbine 

dataset capturing vibration run-to-failure data. Leveraging this dataset, we employ an Uncertainty 

Bayesian-Optimized Extreme Learning Machine (UBO-ELM) as a lightweight neural network algo-

rithm for predictive modeling. The optimization process focuses on identifying optimal hyperpa-

rameters, including neurons, activation functions, and regularization parameters, aiming to mini-

mize uncertainty in predictions and enhance generalization performance. To quantify uncertainty, 

we employ a confidence interval-based approach, computing multiple confidence interval features 

to provide a comprehensive numerical evaluation of uncertainty. The neural network’s performance 

is further evaluated using a diverse set of error metrics, including the coefficient of determination. 

Despite the massive scale of the dataset, our proposed methodology proves to be simple and com-

putationally efficient, yielding impressive approximation and generalization results. Compared to 

advanced deep learning methods, this approach offers practical utility by leveraging existing com-

putational resources, minimizing costs, and enabling fast validation without prolonged wait times. 
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1. Introduction 

Wind turbines stand as immense sentinels on landscapes worldwide, harnessing the 

boundless power of the wind to generate clean, renewable energy. Their significance in 

the global energy landscape cannot be overstated, as they represent a crucial component 

of efforts to combat climate change and transition towards sustainable energy sources [1]. 

However, the reliable operation of wind turbines is contingent upon effective monitoring 

and maintenance practices to ensure optimal performance and longevity [2]. The advent 

of data-driven methods has revolutionized the field of wind turbine prognosis, offering 

unparalleled insights into the health and performance of these complex systems [3,4]. By 

analyzing vast streams of data, including vibration patterns and operational parameters, 

these methods enable early detection of potential faults and predictive maintenance 

strategies. Such proactive approaches not only enhance operational efficiency but also 

minimize downtime and maintenance costs, thereby maximizing the return on 
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investment for wind farm operators [5–11]. Despite the immense promise of data-driven 

approaches, their efficacy can be impeded by several challenges, particularly in the context 

of wind turbine applications. The harsh environmental conditions to which wind turbines 

are subjected introduce complexities in data acquisition and analysis, necessitating 

innovative solutions to navigate these challenges effectively. Moreover, the computational 

demands associated with traditional deep learning algorithms pose significant barriers, 

limiting their practical utility in real-world applications [12,13]. 

In this context, our research endeavors to address these challenges by proposing a 

novel approach to wind turbine prognosis for maintenance purposes. Leveraging a 

realistic dataset capturing vibration run-to-failure data from high-speed shaft wind 

turbines [14], we introduce the Uncertainty Bayesian-Optimized Extreme Learning 

Machine (UBO-ELM) as a lightweight neural network algorithm for predictive modeling 

[15–17]. This approach is tailored to optimize hyperparameters, such as neurons, 

activation functions, and regularization parameters, with a primary focus on minimizing 

uncertainty in predictions and enhancing generalization performance. To quantify 

uncertainty, we employ a confidence interval-based approach, generating multiple 

confidence interval features like interval width, stability, and coverage probability, to 

provide a comprehensive numerical evaluation. Furthermore, the performance of our 

neural network model is rigorously evaluated using diverse error metrics, including the 

coefficient of determination, to ensure robustness and reliability. 

Despite the complexity and scale of the dataset, our methodology demonstrates 

simplicity and computational efficiency, yielding impressive approximation and 

generalization results. By contrast with advanced deep learning methods, our approach 

offers practical utility by leveraging existing computational resources, minimizing costs, 

and enabling rapid validation without prolonged wait times. In summary, our research 

presents a significant contribution to the field of wind turbine prognosis, offering a 

pragmatic solution to the challenges associated with data complexity and computational 

intensity. Through the integration of uncertainty quantification and lightweight neural 

network algorithms, we aim to facilitate more effective maintenance strategies, ultimately 

enhancing the reliability and longevity of wind turbine systems. 

2. Materials 

The dataset used in this work simulates vibration data from a high-speed shaft 

bearing in a wind turbine, which is commonly associated with failure modes in such 

systems [14]. The dataset comprises run-to-failure vibration measurements collected from 

accelerometers mounted near to the wind turbine high-speed shaft. Additionally, the 

dataset includes information about the operational conditions, which are crucial factors 

influencing the behavior of the bearing. The dataset is illustrated in Figure 1a, showcasing 

its complexity and variability, necessitating important preprocessing steps. Therefore, this 

work proposes steps outlined in Figure 1b–e, including wavelet denoising, feature 

extraction, outlier removal, and filtering. These steps aid in providing a linear trend of 

degradation. Finally, the dataset is labeled with a degraded linear function representing 

50 days of remaining useful life (RUL) as in Figure 1f. 
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Figure 1. Wind turbine high-speed shaft dataset and processing: (a) raw dataset; (b–e) processing 

steps; (f) RUL labels. 

3. Methods 

In this work, the Extreme Learning Machine (ELM) was employed to reduce the 

complexity of the learning system’s architecture. Unlike traditional learning systems, 

which often require iterative tuning of weights and biases across multiple layers, ELM 

offers a more efficient approach by utilizing a single hidden layer with randomly 

generated weights. The process is divided into three main steps: 

1. Generating input weights and biases: The first step involves generating the input 

weights 𝑎  and biases 𝑏  randomly. These parameters are fixed once initialized, which 

simplifies the training process by eliminating the need for backpropagation and iterative 

weight updates. This step helps in defining the non-linear transformation of the input 

data, 𝑋. 

2. Calculating and activating the hidden layer: The second step involves computing 

the hidden layer’s output, denoted as 𝐻 . This is done by applying the activation 

function  𝑓  to the input data 𝑋  and the corresponding weights and biases. 

Mathematically, this step is represented by Equation (1). Here, 𝐻 is the activated hidden 

layer, 𝑓  is the chosen activation function (such as sigmoid or ReLU), and 𝑎𝑋 +  𝑏 

represents the linear combination of inputs, weights, and biases that are transformed by 

the non-linearity. 

𝐻 = 𝑓(𝑎𝑋 + 𝑏) (1) 

3. Determining the output weights: In the final step, the output weights 𝛽 are deter-

mined using a closed-form solution. The output weights are computed by solving a linear 

system, which involves the hidden layer outputs 𝐻 and the target outputs 𝑦. To stabilize 

the solution, a regularization term 𝐶 is included to prevent overfitting, especially when 

dealing with noisy data. The solution also utilizes the pseudo-inverse of the hidden layer 

matrix, represented by (𝐻𝐻𝑇 +  𝐼𝐶)−1 , where 𝐻𝑇   is the transpose of 𝐻 , and  𝐼  is the 

identity matrix. This equation is expressed as in (2). Here, 𝛽  represents the output 

weights that map the hidden layer outputs `H` to the final predictions 𝑌. The regulariza-

tion term 𝐶  helps control the trade-off between fitting the data well and keeping the 

model weights small to enhance generalization performance. 

𝛽 = (𝐻𝐻𝑇 + 𝐼𝐶)−1𝑌 (2) 



Eng. Proc. 2024, 6, x FOR PEER REVIEW 4 of 6 
 

 

This study employs a z-score-based confidence interval (CI) to quantify uncertainty 

in predictions [18]. In Equation (3), �̅� represents the sample mean, 𝑧 is the score for a 

given confidence level (e.g., around 2.5758 for a 99% confidence level in this study), 𝜔 

signifies the standard deviation of 𝑋, and 𝑛 is the number of points in 𝑦. The objective 

function primarily focuses on the interval width, 𝐶𝐼𝑤, as the main objective, as shown in 

Equation (4). A narrower 𝐶𝐼𝑤 indicates higher certainty in predictions. 

𝐶𝐼 =  �̅� ± 𝑧 ∙ 𝜔 (3) 

𝐶𝐼𝑤 =  2(𝑧 ∙ 𝜔) (4) 

4. Results 

Figure 2 presents a comprehensive view of the results obtained by applying the 

proposed UBO-ELM approach. This figure consists of multiple subplots that highlight the 

model’s performance during both the training and testing phases. In Figure 2a,b, the 

training and testing curves are depicted, showcasing the curve-fitting of the model on the 

respective datasets, with an 80%–20% split ratio between training and testing. These 

curves demonstrate how well the UBO-ELM model learns from the training data and 

generalizes its performance on unseen testing data. The close alignment of the curves 

indicates that the model is not overfitting and can accurately predict on new data, 

reinforcing its generalization capabilities. Figure 2c presents the confidence interval (CI) 

for the testing set, constructed for a 99% confidence level. The CI provides a measure of 

uncertainty in the predictions, showing the range within which future predictions are 

expected to fall with high confidence. The fact that the CI is narrow and smooth in this 

figure implies that there is minimal variability in the model’s predictions. The tight CI 

reflects the model’s stability and reliability, suggesting that its predictions are not overly 

sensitive to changes in the data. Figure 2d,e illustrate the error metrics and the coefficient 

of determination (R2) for both the training and testing sets. Error metrics such as Mean 

Squared Error (MSE) or Root Mean Squared Error (RMSE) are displayed, indicating how 

well the model performs in minimizing the difference between predicted and actual 

values. The low error metrics in both the training and testing phases imply that the UBO-

ELM model accurately captures the underlying patterns in the data. Additionally, the high 

coefficient of determination suggests that a large proportion of the variance in the data is 

explained by the model, which is crucial for predicting long-term trends in wind turbine 

behavior. The narrow confidence interval shown in Figure 2c, combined with the low 

error metrics and high R2 values in Figure 2d,e, demonstrate the effectiveness of the 

proposed UBO-ELM approach in predicting outcomes with high certainty. The 

smoothness and tightness of the CI indicate that the model is not only precise but also 

highly reliable for making predictions under uncertainty, which is critical for applications 

such as wind turbine prognosis. The CI’s alignment with the 99% confidence level 

suggests a high degree of confidence in the model’s ability to provide accurate predictions. 

In summary, the results from Figure 2 collectively indicate that the UBO-ELM approach 

excels in addressing the challenges of wind turbine prognosis. The stable training and 

testing curves, low error rates, high R2 values, and narrow, smooth confidence intervals 

all highlight the robustness and reliability of the model. This makes the UBO-ELM 

approach a powerful tool for maintenance planning and decision-making in wind energy 

systems, where accurate predictions of component degradation and remaining useful life 

are essential for minimizing downtime and optimizing maintenance schedules. The 

model’s ability to produce stable predictions with high certainty ultimately contributes to 

enhancing the overall efficiency and reliability of wind energy operations. 
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Figure 2. Results obtained from applying the proposed UBO-ELM approach: (a,b) Training and 

testing curve fits with an 80%–20% split ratio; (c) Confidence interval (CI) for a 99% confidence level 

for the testing set; (d,e) Error metrics results along with the coefficient of determination for training 

and testing respectively; (f) CI features showcasing stability and coverage probability. 

5. Conclusions 

This study introduces a novel approach to wind turbine prognosis for maintenance 

purposes, utilizing UBO-ELM algorithm. By leveraging realistic vibration run-to-failure 

data from high-speed shaft wind turbines, our methodology demonstrates simplicity and 

computational efficiency, offering impressive approximation and generalization results. 

Through uncertainty quantification and lightweight neural network algorithms, we 

address the challenges associated with data complexity and computational intensity in 

wind turbine data analysis. The presented results showcase stable performances in both 

training and testing datasets, with narrow and smooth confidence intervals indicating 

high confidence in predictions. Low error metrics and high coefficients of determination 

underscore the accuracy and reliability of the model. Furthermore, the CI features 

visualization highlights the stability and coverage probability of the predictions. Overall, 

the UBO-ELM approach represents a significant advancement in wind turbine prognosis, 

offering practical utility by maximizing the use of existing computational resources and 

enabling rapid validation. By providing early detection of potential faults and facilitating 

proactive maintenance strategies, this methodology contributes to enhancing the 

reliability and longevity of wind turbine systems, ultimately supporting the transition 

towards sustainable energy solutions. 
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