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Abstract: A detailed analysis of the inertial signals input is required when using deep learning models
for Parkinson’s Disease detection. This work explores the possibility of reducing the input size of the
models studying the most appropriate frequency range and determines if it is feasible to evaluate
subjects with different sensor locations than those used during training. For experimentation, 3.2-s
windows are used to classify signals between Parkinson’s patients and control subjects, applying Fast
Fourier Transform to the inertial signals and following a Leave-One-Subject-Out Cross-Validation
methodology over the PD-BioStampRC21 dataset. It has been observed that the frequency range
of 0 to 5 Hz offers a classification accuracy rate of 75.75 ± 0.62% using the five available sensors for
training and evaluation, which is close to the model’s performance over the entire frequency range,
from 0 to 15.625 Hz, which is 77.46 ± 0.60%. Regarding the transfer learning between sensors located
in different body parts, it was observed that training and evaluating the model using data from the
right forearm resulted in an accuracy of 65.17 ± 0.69%. When the model was trained with data from
the opposite forearm, the accuracy was similar, at 63.57 ± 0.69%. Likewise, comparable results were
found when using data from the other forearm and when training and evaluating with opposite
thighs, with accuracy reductions not exceeding 3%.

Keywords: Parkinson’s disease; inertial sensors; convolutional neural networks; fourier transform;
PD-BIOSTAMPRC21

1. Introduction

Analyzing inertial data offers precise detection on motor anomaly diseases diagnosis,
patients monitoring, and evaluation of medical response. Signal processing techniques
and artificial intelligence approaches have increased on last years. In particular, their
application on healthcare and diseases detection like Parkinson‘s Disease (PD) becomes
really useful for early diagnosis. PD is a neurodegenerative disorder characterized by
motor symptoms such as tremor, bradykinesia or rigidity, but affects also to non-motor
symptoms including cognitive problems, sleep disorders, and other health problems such
as depression or anxiety [1]. Early detection and medical treatment on the first stages of the
disease could improve quality of life of the patients, therefore studies on detection with
innovative deep learning systems are of great interest [2].

Literature offers a wide number of works focused on human motion modelling [3,4]
using deep learning algorithms using wearable sensors, including those focused on PD
detection [5–7]. A previous study [8] presented the PD-BioStampRC21 dataset using five
inertial sensors over different body locations to detect PD and made a hypothesis stating
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that the data received by the thigh sensors provide signals similar to those of the forearms.
This aspect was stated because during data collection, the subjects rested their arms on
their legs while sitting, so the thigh sensors could extract signals from the arms as well.

Regarding to PD detection accuracy rates using the mentioned dataset obtained in
previous works, a previous work [1] obtained a 92.4% accuracy rate using a deep learning
architecture and 6.4-s windows of raw data. However, this work used a data distribution
that uses signals from the same subject to train and to test the system, simulating an opti-
mistic scenario. Another study [9] used a Leave-One-Subject-Out (LOSO) cross-validation
methodology to simulate a more realistic scenario, obtaining a 60.33 ± 1.00% accuracy rate
using the same data with 3.2-s windows.

This work proposes the analysis of signal processing techniques and a deep learning
neural network in order to identify useful patterns for PD detection and relevant informa-
tion analyzing different options on the input of the model. Certain experiments have been
performed to analyse what information is useful for the model, including the aspect about
the hypothesis made by a previous work about the correlation among arms and thighs
sensors [8]. In particular, a study of the range of frequencies useful for the detection of
the disease has been made. Moreover, this work studies the possibility of training and
evaluating the system with sensors in different locations to analyse the transfer learning
between them. Then, we first train and evaluate the model with data from a sensor in
the same location, and then train the model with a sensor in one location and evaluate
it with a sensor in another location, to observe how much the PD detection performance
decrease for each sensor pair. Results obtained on these experiments could explain which
sensors are suitable for training when another sensor is evaluated particularly. Therefore,
the contributions made in this work are:

• Frequency analysis to obtain the frequency range with more useful information for
PD detection.

• Transfer learning across the sensor locations on different body parts, discussing accu-
racy rates acquired training with one sensor and testing with another.

This paper is organized as follows. Section 2 defines the material and methods
implemented, including a description of the dataset, the signal processing, the neural
network and the evaluation methodology. Section 3 discusses the results obtained by the
experimentation and Section 4 exposes the conclusions of this work.

2. Materials and Methods

This section describes the dataset, defines the signal processing techniques, and ex-
plains the deep learning neural network and the evaluation methodology used in this work.

2.1. Dataset

The PD-BioStampRC21 dataset [8] comprises tri-axial accelerometer data collected
from five wearable sensors, involving both participants with PD patients and healthy
controls. The data was gathered using lightweight MC10 BioStamp RC sensors, with each
participant wearing five sensors positioned on specific body parts: the chest, left anterior
thigh, right anterior thigh, left anterior forearm, and right anterior forearm, as illustrated
in Figure 1. The data was sampled at a rate of 31.25 Hz. The dataset features recordings
from 34 subjects: 17 healthy controls and 17 PD participants. However, after examining the
dataset, it was determined that some sensors from control participants with IDs 007, 014,
and 060 had missing data, and thus, those participants were excluded from the study, as
done in a previous work [9].
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Figure 1. A participant wearing the sensors at five different locations [8].

2.2. Signal Processing

Similar to the baseline system [1], we used 30,000 readings (16.13 min) per participant,
along with their health status, to feed the classification system and examine the impact of
specific factors.

As observed in a previous work [9], the frequency domain provides more relevant
information than the direct raw signals. For this reason, we decided to directly use the
Fast Fourier Transform (FFT) coefficients from the inertial signals. Initially, we segmented
the recordings into overlapping windows, with a shift equivalent to half the window
size between consecutive windows. This way, the system will classify each window as
either healthy control or PD based on the participant’s health status. We evaluated the
classification performance 3.2-s windows, corresponding to 100 time samples, since it was
the window length that obtained the best performance over this dataset in a previous work
[9].

For obtaining the frequency domain signals, we computed the FFT coefficients for
each analysis window, representing the spectrum from 0 Hz to half the sampling frequency,
15.625 Hz for the PD-BioStampRC21 dataset. Since tremor motion energy is primarily
concentrated in low frequencies [10], the resulting spectrogram could be beneficial for
PD detection.

2.3. Deep Learning Architecture

The deep learning architecture used in this work was a Convolutional Neural Network
(CNN), composed of two subnets, as illustrated in Figure 2. First one is the feature learning
subnet, which learns features from the input data using convolutional layers with 32 kernels
of (1, 5); max-pooling layers with (1, 2) kernel dimensions and ReLU activation function for
reducing the impact of gradient vanishing effect. The second one is the classification subnet,
applying two dense layers of 64 and 2 dimensions while using on the last layer a SoftMax
activation function to offer the predictions of each class for every frame, generating a final
classification between PD patient and healthy person. Adam optimizer has been used,
setting a learning rate on the neural network, and 30 epochs with a batch size of 100.

Input data dimensions were adapted to each experiment, but they are based on N
signals x M samples. N is equivalent to the number of sensors used, being 3 for a single
sensor (X, Y and Z signals) and 15 using all five sensors of the dataset. M corresponds to the
samples in the frequency domain, which corresponds to 50 samples (half of the 100 samples
from the 3.2-s windows). These 50 samples correspond to the frequency range between 0
and 15.625 Hz. M value was different when analyzing frequency ranges. For example, for 0
to 5 Hz, M would be 16, third part of the value of the full range of frequencies.
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Figure 2. Deep learning neural network used in this work for PD detection.

2.4. Evaluation Methodology

To create a more realistic system, it has been employed a Leave-One-Subject-Out
(LOSO) Cross-Validation strategy. This is a specific form of K-fold cross-validation where
the system is tested on the data from one subject while being trained on the data from
the remaining subjects. This process is repeated multiple times, each time leaving a
different subject out for testing, and the final results are averaged across all iterations. This
methodology simulates a more challenging and realistic scenario by evaluating the system
with recordings from subjects not included in the training data. This creates a realistic
system, capable of detecting PD in patients external to the database.

The evaluation metric used in this work is accuracy rate, which is defined in Equation (1),
with N testing examples, C classes and Pii being the correct predictions of the model.

Accuracy rate =
1
N

C

∑
i=1

Pii (1)

In order to represent differences between accuracy rates, confidence intervals (CI) have
been used. Only when results surpasses values of other accuracy rates with their confidence
interval added, it would represent a real difference. CI are defined in Equation (2), being N
the number of testing examples.

CI (95%) = ±1.96 ·
√

Metric rate · (100 − Metric rate)
N

(2)

3. Results and Discussion

This section describes the experimentation performed in this work, including re-
sults and discussion on frequency analysis and transfer learning between different sen-
sor locations.

3.1. Frequency Analysis

As previously mentioned, the sampling frequency of the inertial sensors is 31.25 Hz.
This was, the maximum frequency range that could be used to feed the system is between
0 Hz and half of the sampling frequency, 15.625 Hz.

The energy level received from the tremor associated with Parkinson’s disease is found
at low frequencies, so it is of great interest to find the optimal frequency range for the
detection of the disease. Therefore, we studied different frequency ranges to obtain valuable
information about Parkinson’s tremor: four possible scenarios have been considered for
the study.

1. Using the whole available frequency range between 0 and 15.625 Hz.
2. Using the frequency range between 0 Hz and 5.208 Hz.
3. Using the frequency range between 5.208 Hz and 10.417 Hz.
4. Using the frequency range between 10.417 Hz and 15.625 Hz.

As the frequency range decreases in scenarios 2, 3 and 4, the number of samples of
the signal is reduced as well, which initially is 50 with all frequencies. By choosing a
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frequency range that corresponds to one third of the range used, the number of points will
be approximately one third of this value. Table 1 shows the accuracy rates obtained for the
different frequency ranges using all the available sensors or each of those separately.

Table 1. Accuracy rates with FFT signals using each sensor as train and test for each frequency range.

Sensor Frequency Range (Hz) Accuracy Rate (%)

All

0–15 77.46 ± 0.60
0–5 75.75 ± 0.62

5–10 61.87 ± 0.70
10–15 56.85 ± 0.71

ch—Chest

0–15 73.28 ± 0.64
0–5 70.34 ± 0.66

5–10 53.39 ± 0.72
10–15 46.80 ± 0.72

lh—Left forearm

0–15 65.71 ± 0.68
0–5 65.95 ± 0.68

5–10 46.38 ± 0.72
10–15 44.71 ± 0.72

ll—Left thigh

0–15 62.90 ± 0.69
0–5 62.15 ± 0.70

5–10 50.94 ± 0.72
10–15 48.45 ± 0.72

rh—Right forearm

0–15 64.95 ± 0.69
0–5 63.68 ± 0.69

5–10 51.49 ± 0.72
10–15 48.52 ± 0.72

rl—Right thigh

0–15 64.55 ± 0.69
0–5 65.77 ± 0.69

5–10 56.07 ± 0.71
10–15 43.69 ± 0.71

It can be seen that the accuracy rates from 0 to 5 Hz have very similar values to the
whole frequency range for each sensor setup. For example, using all sensors, the system
reaches 75.75 ± 0.62% using the first 5 Hz against 77.46 ± 0.60% using the whole frequency
range, and using the left thigh sensor, the system reaches 62.15 ± 0.70% using the first 5 Hz
against 62.90 ± 0.69% using the whole frequency range . In most sensor setups, there is no
significant difference between these two scenarios, such as in the case of the left forearm
sensor lh, the left thigh sensor ll, the right forearm sensor rh, and the right thigh sensor
rl. This way, it could be observed that using the 0 to 5 Hz frequency range and the full
frequency range produces similar performance for most independent sensors, decreasing
only with the chest sensor ch and using all sensors together by maximum value of 3% .

These accuracy rates can be reasoned out due to the nature of the tremor. Figure 3
shows the spectrogram of the right forearm sensor from a PD patient, where we can see
that the highest energy level occurs at the 4 Hz frequency. We can also observe high energy
levels in the frequencies of its harmonics, at 8 Hz and 12 Hz, but they are lower levels,
so the information could really be found in the lower frequency range. The remaining
frequencies, being the second and third harmonics, are considered repetitions with lower
energy level of the first observable frequency.
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Figure 3. Spectrogram of the signals obtained by the right forearm sensor rh from subject with ID 017
of the database.

This result could lead to the possibility of using the third part of the samples in the
sensors where the performance is similar, from 0 to 5 Hz, simplifying the input to the model
and reducing the training and test time.

3.2. Transfer Learning Across Different Body Sensor Locations

Figure 4 shows the results of the experiments related to training and evaluating the
model with sensors in the same or different locations. In the heat map representation, the
x axis is related to the sensor used for testing and the y axis is related to the sensor used
for training. This way, the principal diagonal shows the results using a specific sensor for
training and testing. In addition, the performance values of each column are comparable to
each other, since the data used for testing come from the same sensor and location.

Figure 4. Accuracy rates using different training and testing sensor locations.
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In this figure, it can be seen that, naturally, the best rate for each test sensor is obtained
when the system is trained with data using the sensor at the same location (results in the
principal diagonal). The rest of performance results are related to experiments where we
found transfer learning capabilities between sensors, training with a sensor in one location
and evaluating with a sensor in another location. In these results, obtaining rates of a
similar level means that there exist a tremor relation between those locations.

The results shows how the sensors located in the same location (i.e., arm), but on
opposite sides of the body (right or left), offer similar tremor information that allows the
possibility of training with one of the sensors, such as the left forearm, and evaluating
with the sensor on the opposite side, the sensor on the right forearm, without reducing
performance. For example, an accuracy rate of 63.57 ± 0.69% was obtained when training
the system with the left forearm and evaluating with the right forearm, compared to the
performance of 65.17 ± 0.69%, obtained when training and evaluating with the right forearm
sensor. The same behaviour was observed with the thigh sensors.

In addition, it is observed that the hypothesis previously mentioned [8] related to a
possible problem with the thigh sensors does not seem to be entirely correct. Analyzing the
accuracy rates on both body sides, it can be seen that, for example, training and evaluating
with the left thigh ll sensor, the system offered an accuracy rate of 64.52 ± 0.69%, and
training with the left forearm sensor lh and evaluating with the left thigh ll sensor, the
accuracy rate decreased notably, reaching 52.29 ± 0.72%. This behaviour also occurred for
the right thigh and forearm sensors. These results suggest that the thigh tremor was not
directly the same as the forearms just because the subjects held their arms over their thighs
as the hypothesis of a previous work stated [8].

4. Conclusions

The analysis of the input inertial signals of a deep learning architecture allows the
characterisation of useful information from the tremor for PD detection. This work uses
3.2-s windows and a CNN over the PD-BioStampRC21 dataset with five inertial sensors
and 31 subjects being PD patients and healthy controls, using a LOSO cross-validation
methodology to generate a more realistic scenario.

Analyzing different frequency ranges to feed the system, it has been observed that
the first harmonic, located in the range from 0 to 5 Hz, offers a higher performance than
the rest of the frequency ranges (5–10 Hz or 10–15 Hz). In addition, in most of isolated
sensor setups using the frequency range from 0 to 5 Hz, the model produced accuracy
rates without significant difference to those obtained with the whole frequency range. For
example using the left thigh sensor, the system reaches 62.15 ± 0.70% using the first 5 Hz
against 62.90 ± 0.69% using the whole frequency range from 0 to 15.625 Hz. These results
open the possibility of reducing the input size without losing performance.

Regarding the results of transfer learning across different body sensor locations, it can
be set that a relationship on a specific sensor and the one in the opposite body part exists.
For example, training the model with the left forearm sensor and evaluating with the right
forearm, obtains an accuracy rate of 63.57 ± 0.69%, while training and evaluating with the
right forearm sensor produces an accuracy rate of 65.17 ± 0.69%. Then, only a 2% reduction
of PD detection performance occurred. The same behaviour was observed with the right
and left thigh sensors. In addition, evaluating the model with the sensor located on the
chest, the right forearm sensor also offers a high accuracy rate.

It is possible to extend this work on future studies. For example, it could be interesting
to apply the experimental setups proposed in this work over new datasets with a higher
number of subjects in order to certify the results observed in this work. Furthermore, as
the results of this work find possible input reduction, and transfer learning across opposite
forearms, it could be of great interest developing an interactive wearable application to
build real time systems to those who may need those. Moreover, it could be possible to
analyse the evolution of the PD disease by creating a regression system to estimate the
Unified Parkinson’s Disease Rating Scale (UPDRS) from tremor signals.
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