

# The 4th International Electronic Conference on Agronomy



02-05 December 2024 | Online

Explicit utilization of blue green microalgae, Spirulina platensis (Gomont)Geitler, as bio-stimulant in cereal seed germination

Jerentulina Vijayarasa

School of science and the environment, Memorial University of NL, Canada

Ð

## **INTRODUCTION & AIM**

- Seed germination by conventional chemical treatments poses environmental risks. Utilizing eco-friendly bio-stimulants can offer sustainable solutions to improve seed germination and crop establishment.
- Seed germination is a critical stage in plant growth, significantly impacting crop yield.
- Bio-stimulants, like Spirulina platensis, are sustainable alternatives to chemical treatments, known to enhance seed germination and early growth.

**Aim**: To evaluate the effect of *Spirulina platensis* extract as a biostimulant on the germination and early growth of paddy (Oryza sativa), maize (Zea mays), cowpea (Vigna unguiculata), and green gram (Vigna radiata).

### **RESULTS & DISCUSSION**





*Figure 4.* Germination rate of maize in different treatments(T0-T5)

| %)  | 120 | COWPEA |  |
|-----|-----|--------|--|
| ate | 100 |        |  |



Figure 1. Graphical representation of Spirulina platensis on seed germination study

### METHOD

| Seed Selection         | Seeds of paddy (Oryza sativa), green gram (Vigna radiata), maize (Zea mays), and cowpea (Vigna unguiculata) were used                                                                                                              |  |  |
|------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Experimental<br>Design | Six treatments were prepared with varying Spirulina concentrations such as T0 (0g/L), T1 (2g/L), T2 (4g/L), T3 (6g/L), T4 (8g/L) & T5 (10g/L). Each treatment included 20 seeds per replicate with three replicates per treatment. |  |  |
| Seed Soaking           | Seeds were soaked overnight in their respective Spirulina solutions to<br>ensure adequate absorption. T0 (control) seeds were soaked in<br>distilled water.                                                                        |  |  |
| Germination<br>Setup   | Soaked seeds were placed on moistened filter paper in Petri dishes<br>and incubated at room temperature for 7 days. Spirulina solutions<br>were sprayed until the end of the experiment. Moisture was                              |  |  |



*Figure 5.* Germination rate of Green gram in different treatments(T0-T5)

 80
 60

 40

 20

 0
 T0

 T0
 T1

 T0
 T1

 T0
 T2

 T3
 T4

 T5

 Cowpea
 98.89

 63.33
 64.45

 64.44
 63.33

 57.77

*Figure 6.* Germination rate of cowpea in different treatments(T0-T5)

| Selected<br>Grain Seed     | Results and discussion                                                                                                                                                                                                                                                         |  |  |
|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Paddy<br>(Graph – 01)      | <ul> <li>Showed positive response with treatment</li> <li>Based on the graph, germination increased with increasing spirulina concentration up to T3 then T4and T5, indicating potential</li> </ul>                                                                            |  |  |
|                            | inhibition at higher concentrations.                                                                                                                                                                                                                                           |  |  |
| Maize<br>(Graph – 02)      | <ul> <li>Positive to Spirulina treatment</li> <li>T2 and T3 achieved the highest germination rate Compared to the control especially, T3 showed an approximate 13% increase in germination but germination rates decreased with higher concentrations of Spirulina.</li> </ul> |  |  |
| Green gram<br>(Graph – 03) | <ul> <li>The treatments failed to show consistent improvement compared<br/>to control.</li> </ul>                                                                                                                                                                              |  |  |
| Cowpea<br>(Graph – 04)     | <ul> <li>None of the treatments demonstrated a significant improvement over control.</li> <li>Spirulina treatments may not have a stimulatory effect on cowpea seed germination</li> </ul>                                                                                     |  |  |

## CONCLUSION

Paddy and maize showed the most significant improvement, at 6g/L Spirulina (T3), compared to the control
Green gram and cowpea showed bit, or no improvement compared to the control, with green gram even showing a decrease in germination at higher concentrations.

maintained consistently throughout the study period.

Data CollectionGermination rate was recorded daily by counting the number of<br/>germinated seeds. The average germination percentage for each<br/>treatment was calculated over 7 days



Figure 2. Pre-socking and germination rate counting of selected seeds

### FUTURE WORK / REFERENCES

- Evaluate the performance of Spirulina treatments under field conditions with Multi-Crop Studies to assess their practicality and scalability for agricultural applications.
- Danesi, E. D. G., Carvalho, J. C. M. and Sato, S. (2004) 'Effect of reducing the light intensity on the growth and production of chlorophyll by Spirulina platensis', Biomass and biotechnology, 26(2004), pp. 329–335.

