IECAG 2024 Conference

The 4th International Electronic Conference on Agronomy

02-05 December 2024 | Online

Influence of Sucrose Levels and LED Light Spectra on In Vitro Propagation of Cornelian cherry (*Cornus mas* 'Podolski')

Nabilah Amany Samsurizal, Marta Monder, Andrzej Pacholczak

Department of Ornamental Plants, Institute of Horticultural Sciences, Warsaw University of Life Sciences

INTRODUCTION & AIM

Cornelian cherry or *Cornus mas* is well known for its nutritional, medicinal, and ornamental uses. The cultivar *Cornus mas* 'Podolski' is particularly valued for its larger fruit size, high yield, and adaptability, making it a promising candidate for commercial cultivation and landscape use [1].

Figure 1. Cornus mas • *Podolski* plant by kielkowski-szkolka.pl

- Conventional propagation methods are limited, necessitating the development of efficient *in vitro* techniques.
- Light-emitting diodes (LEDs) are currently being used as a light source for in
- The blue-red LED produced the highest shoot length at 10 g.L⁻¹ sucrose (4.50 ± 0.40), while the blue LED produced the second highest shoot length (4.10 ± 0.35) at 15 g.L⁻¹ sucrose.
- White LED consistently resulted in shorter shoots compared to colored LEDs, regardless of the sucrose level.

Table 3. The effect of LED light color and sucrose level (g.L-1) on the number of *in vitro Cornus mas* 'Podolski' leaves.

LED color/ Sucrose level	White (Control)	Blue	Blue-Red	Red	Means (Sucrose Level)
10	$4.50\pm0.40~\text{b}$	$6.20\pm0.50~bc$	$6.50\pm0.60\ c$	$6.30\pm0.55~\text{c}$	$5.88 \pm 0.51 \ bc$
15	$5.00\pm0.45~\text{b}$	$6.50\pm0.55~bc$	$6.00\pm0.50~bc$	$6.40\pm0.60~\text{c}$	$5.98 \pm 0.53 \text{ bc}$
20	$3.80\pm0.35~a$	$5.90\pm0.50~\text{bc}$	$6.20\pm0.55~bc$	$6.00\pm0.50~bc$	$5.23\pm0.48~b$
Means (LED color)	$4.43\pm0.40~\text{b}$	$6.20\pm0.52~bc$	$6.23\pm0.55~bc$	$6.23\pm0.55~bc$	

vitro regeneration or the growth of plants in a controlled environment [2].

The objective of the present work was to investigate the influence of varying sucrose concentrations (10 g·L⁻¹, 15 g·L⁻¹, 20 g·L⁻¹) and different dominating LED light spectra; White (Control); Blue (B); Blue-Red (BR); and Red (R) on the *in vitro* growth and morphogenesis of C. *mas* 'Podolski'.

METHOD

RESULTS & DISCUSSION

Table 1. The effect of LED light color and sucrose level (g.L-1) on the number of *in vitro* regenerating *Cornus mas* 'Podolski' shoots.

LED color/ Sucrose level	White (Control)	Blue	Blue-Red	Red	Means (Sucrose Level)
10	$3.50\pm0.30~ab$	$5.20\pm0.40~\text{bc}$	$6.00\pm0.50~\text{c}$	$5.90\pm0.45~\text{c}$	$5.15\pm0.45~\text{bc}$
15	$4.10\pm0.35~\text{b}$	$5.50\pm0.45~\text{bc}$	$4.80\pm0.40~b$	$5.60\pm0.50~bc$	$4.83\pm0.40~b$
20	3 00 ± 0 25 a	4 70 + 0 35 h	540 ± 045 bc	5.00 ± 0.40 bc	4 53 + 0 38 h

The combination of Blue-Red light at a sucrose level of 10 g·L⁻¹ produced the highest number of leaves (6.50 ± 0.60), while White light at a sucrose level of 20 g·L⁻¹ produced the lowest number of leaves (3.80 ± 0.35).

Table 4. The effect of LED light color and sucrose level (g.L-1) on *in vitro Cornus mas* 'Podolski' regeneration percentage.

LED color/ Sucrose level	White (Control)	Blue	Blue-Red	Red	Means (Sucrose Level)
10	$80.00\pm5.00~\text{b}$	$90.00\pm6.00~\text{bc}$	$95.00\pm6.50~\text{c}$	$92.00\pm6.20~\text{bc}$	$89.25\pm5.93~bc$
15	$85.00\pm5.50~\text{bc}$	$91.00\pm6.20~\text{bc}$	$92.00\pm6.20~\text{bc}$	$94.00\pm6.30~\text{bc}$	$90.50\pm6.05~\text{bc}$
20	$70.00\pm4.50~\text{a}$	$85.00\pm5.50~\text{b}$	$90.00\pm6.00~\text{bc}$	$88.00\pm5.90~\text{bc}$	$83.25\pm5.48~\text{ab}$
Means (LED color)	78 33 + 5 00 ab	88 67 + 5 90 bc	92 33 + 6 23 hc	91 33 + 6 13 bc	

The combination of Blue-Red light and a sucrose level of 10 $g \cdot L^{-1}$ produces the highest regeneration percentage, while White light at 20 $g \cdot L^{-1}$ results in the lowest regeneration percentage.

Figure 2. *In vitro Cornus mas `Podolski*` plant; (a) White LED; (b) Blue LED; (c) Blue-Red LED; (d) Red LED

20 0.40 ± 0.40 bc

Means (LED color) 3.53 ± 0.30 a 5.13 ± 0.40 bc 5.40 ± 0.45 bc 5.50 ± 0.45 bc

- The blue-red LED produced the highest number of shoots at 10 g.L⁻¹ sucrose, but not at other sucrose levels.
- The red LED resulted in consistently high shoot numbers across all sucrose levels, whereas the white LED produced the lowest shoot numbers at 20 g.L⁻¹ sucrose.

Table 2. The effect of LED light color and sucrose level (g.L-1) on the length of *in vitro* regenerating *Cornus mas* 'Podolski' shoots.

LED color/ Sucrose level	White (Control)	Blue	Blue-Red	Red	Means (Sucrose Level)
10	$2.80\pm0.25~ab$	$4.00\pm0.30~bc$	$4.50\pm0.40\ c$	$3.90\pm0.35~bc$	$3.80 \pm 0.35 \ b$
15	$3.20\pm0.30~\text{b}$	$4.10\pm0.35~bc$	$3.70\pm0.30~\text{b}$	$4.30\pm0.40\ bc$	$3.83\pm0.34\ b$
20	$2.40\pm0.20\ a$	$3.80\pm0.30\ b$	$4.20\pm0.35~bc$	$4.00\pm0.30\ bc$	$3.60\pm0.30~\text{ab}$
Means (LED color)	2.80 ± 0.25 a	$3.97 \pm 0.32 \ b$	$4.13\pm0.35~\text{bc}$	$4.07\pm0.34~\text{bc}$	

CONCLUSION

The results showed significant interactions between sucrose concentration and light spectrum, influencing growth parameters like shoot number, shoot length, leaf count, and regeneration percentage. The White-Red combination generally yielded the best results, while the Red-Blue-Red combination showed the poorest outcomes. Higher sucrose concentrations ($20 \text{ g} \cdot \text{L}^{-1}$) tended to decrease growth performance in some cases.

REFERENCES

- 1. Kazimierski, M., Reguła, J., & Molska, M. (2019). Cornelian cherry (Cornus mas L.)– characteristics, nutritional and pro-health properties. *Acta Scientiarum Polonorum Technologia Alimentaria*, *18*(1), 5-12.
- 2. Dutta Gupta, S., & Jatothu, B. (2013). Fundamentals and applications of lightemitting diodes (LEDs) in in vitro plant growth and morphogenesis. *Plant biotechnology reports*, 7, 211-220.

IECAG2024.sciforum.net