IECAG 2024 Conference

The 4th International Electronic Conference on Agronomy

02-05 December 2024 | Online

Nanoengineered Plant Protection: Cercospora beticola Control in Sugar Beet with Encapsulated Phytoextracts

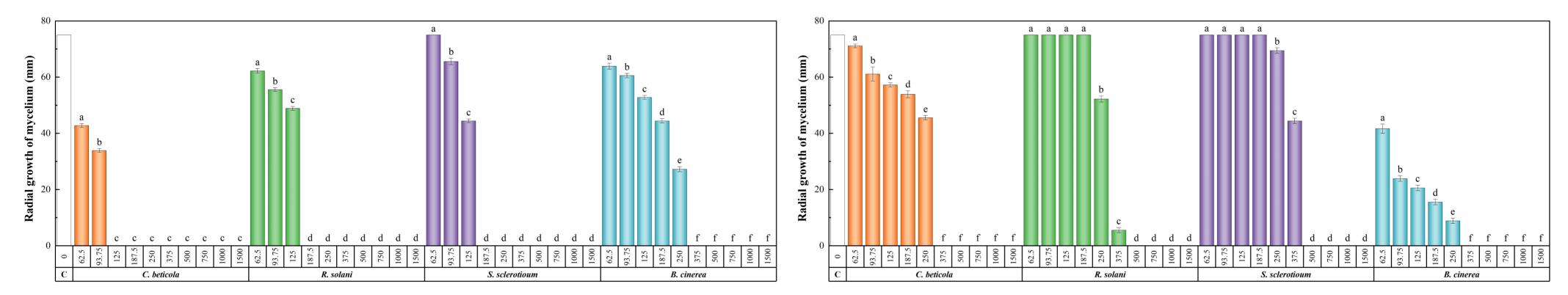
Eva Sánchez-Hernández ¹, Rubén Celada-Caminero ^{1,2}, Alberto Santiago-Aliste ³, Jesús Martín-Gil ¹, José Luis Marcos-Robles ⁴, Vicente González-García ⁵, Pablo Martín-Ramos ¹

¹ Dept. Agricultural and Forestry Engineering, ETSIIAA, University of Valladolid, Spain; ²AIMCRA, Association for the Improvement of Sugar Beet Cultivation, Valladolid, Spain;
³ Dept. Construction and Agronomy, EPSZ, University of Salamanca, Spain; ⁴ Dept. Materials Science and Metallurgical Engineering, ETSIIAA, University of Valladolid, Spain;
⁵ Dept. Agricultural, Forestry, and Environmental Systems, Aragón Agri-Food Institute—IA2 (CITA-University of Zaragoza), Spain

INTRODUCTION & AIM

Nanotechnology offers promising applications in agriculture, aiming to increase crop production while reducing environmental impact. **Nanocarriers** (NCs) enable the efficient transport of biologically active molecules, minimizing the required amount of bioactive compounds and allowing for controlled release over time. Recently, NCs have been proposed as a key technology for applying agrochemicals. This study presents the results of using **chitosanbased NCs to deliver natural compounds**, specifically extracts of *Rubia tinctorum* and *Uncaria tomentosa*, for the effective and **sustainable control of phytopathogens in horticultural crops**.

METHODOLOGY


The synthesis of NCs and their characterization is explained in detail in Santiago-Aliste *et al.* (2022, 2023). Their antimicrobial activity was assessed through *in vitro* analyses against several horticultural pathogens, including *Botrytis cinerea*, *Cercospora beticola*, *Rhizoctonia solani*, and *Sclerotinia sclerotiorum*, following the EUCAST guidelines. For *ex-situ* plant protection assays, the protocol established by González et al. (2020) was followed. Field tests were conducted on sugar beet over a growing season, in AIMCRA's facilities at San Román de Hornija (Valladolid, Spain), with treatment application through spraying.

RESULTS & DISCUSSION

In vitro results:

(a)

Mycelial growth inhibition (MIC) values ranged from 187.5 to 375 µg/mL for NCs loaded with *R. tinctorum* extracts and from 187.5 to 500 µg/mL for those with *U. tomentosa* extracts, depending on the pathogen.

Mycelial growth inhibition achieved with C_3N_4 -COS NCs loaded with *R. tinctorum* extract (*left*) or with C_3N_4 -COS-HAP NCs loaded with *U. tomentosa* extract (*right*) at concentrations over the 62.5–1500 µg/mL range. Same letters indicate non-significant differences at *p*<0.05. Error bars show standard deviations. 'C' represents the untreated control (fungus growing on PDA medium).

Ex-situ plant protection assays:

Complete plant protection of sugar beet plants artificially inoculated with *C. beticola* and *R. solani* was achieved at **500** µg/mL.

Field plant protection assays:

Field tests showed promising results for *C. beticola* control for both treatments at a dose of **500 \mug/mL**, with no phytotoxicity signs.

Plant protection assays against (**a-c**) *C. beticola* and (**d-f**) *R. solani.* (**a,d**) Negative control; (**b,e**) positive control; (**c,f**) treatment with C_3N_4 -COS NCs loaded with *R. tinctorum* extract at 500 µg/mL.

Field application by spraying (left); untreated control leaves (center); treated leaves (right).

CONCLUSION

Chitosan-based nanocarriers loaded with bioactive compounds offer substantial protection of sugar beet against *C. beticola* at a dose of 500 μ g/mL. The absence of phytotoxicity and clogging problems during spray application pave the way to towards optimizing the unmanned aerial vehicle (UAV) field application of these treatments.

REFERENCES

González, V. *et al.* (2020). First report of *Neocosmospora falciformis* causing wilt and root rot of muskmelon in Spain. Plant Disease, 104, 4, doi:10.1094/PDIS-09-19-2013-PDN.

Santiago-Aliste, A. *et al.* (2022). Multifunctional nanocarriers based on chitosan oligomers and graphitic carbon nitride assembly. *Materials*, 15(24), 8981, doi:10.3390/ma15248981.

Santiago-Aliste, A. *et al.* (2023). *Uncaria tomentosa*-loaded chitosan oligomers– hydroxyapatite–carbon nitride nanocarriers for postharvest fruit protection. *Agronomy*, 13(9), 2189, doi:10.3390/agronomy13092189.

Eva Sánchez Hernández, PhD. eva.sanchez.hernandez@uva.es

IECAG2024.sciforum.net