

The 5th International Electronic Conference on Applied Sciences

04-06 December 2024 | Online

Optimizing High-Bit-Rate Optical Transmission with Advanced Technique

HADJADJI Narimane

Department of Electrical Engineering, Faculty of Technology, University of El Oued, Algeria

INTRODUCTION & AIM

High-speed optical communication systems are essential for modern digital networks, enabling the transmission of vast amounts of data over long distances. However, challenges such as power consumption, system complexity, linear-nonlinear effects can significantly limit their performance. To address $\underline{\partial E_{dy}} = (\hat{D} + \hat{N}) E_{dy}$ these limitations, advanced techniques are required to optimize system performance.

This research aims to optimize high-bit-rate optical transmission by employing advanced chromatic dispersion and nonlinearity compensation CDC/NLC

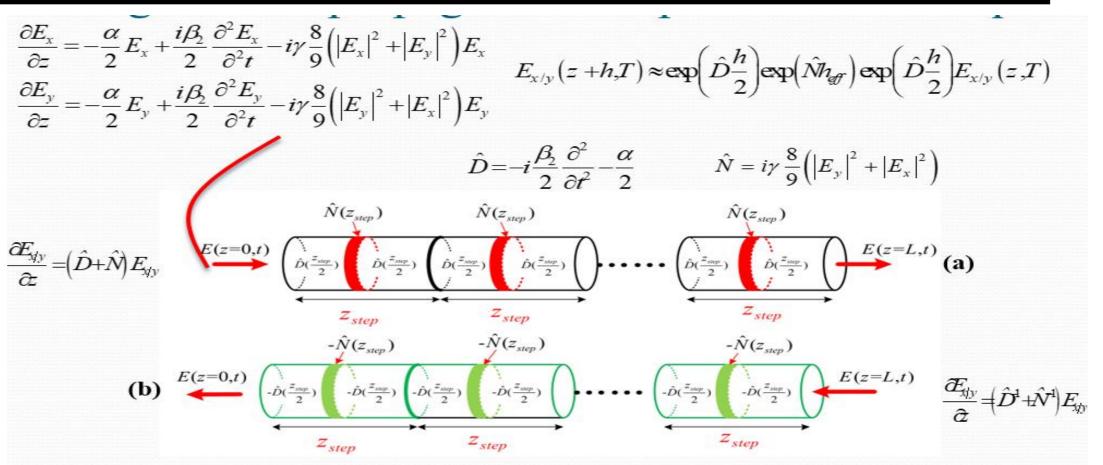
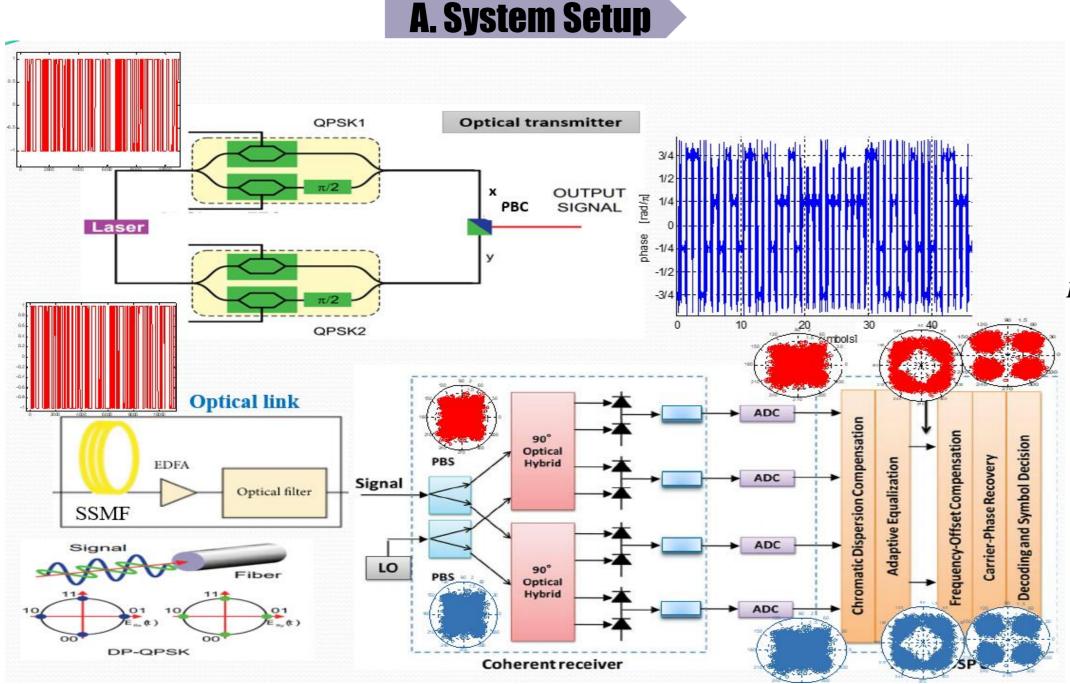



Figure 1.2: (a) Forward propagation process through the fiber, (b) Digital backpropagation propagation through the virtual fiber.

RESULTS & DISCUSSION

techniques through Digital Signal Processing algorithms to mitigate these impairments and enhance system performance metrics such as BER and reach.

METHOD

Figure 1.1: DP-QPSK Coherent Optical System configuration.

The simulation setup of the signal channel different bit rates optical coherent **Dual** Polarisation-Quadrature Phase Shift Keying system is illustrated in Figure 1.1. The system consists a transmitter, transmission link (multi-span of optical fiber and the optical amplifier while the impact of the linear and nonlinear effects are presented, and finally coherent receiver with digital signal processing. The parameters of the link are summarized in Tables below.

Table 1.1: Set of system simulation parameters.

Format

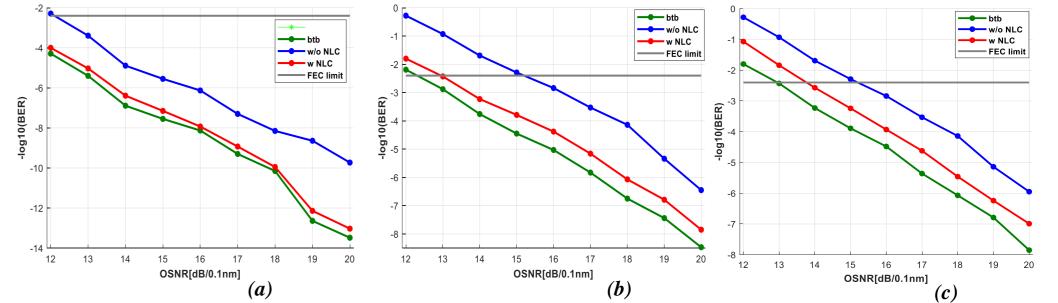

PDM-0.3RZ- QPSK

Table 1.2: Transmission line parameters.

SSMF

Parameters

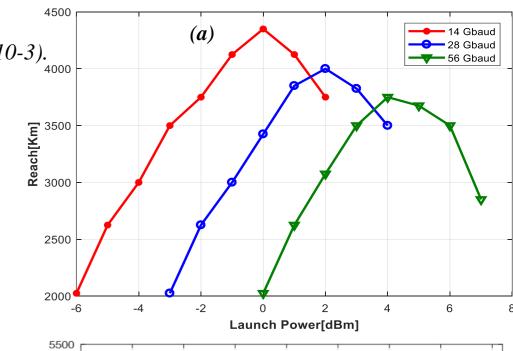
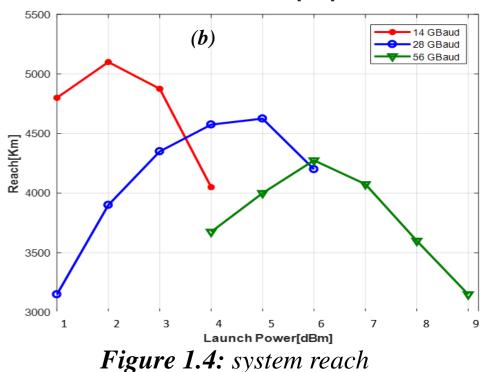

(a) shows the bit error rate (BER) performance curves versus the optical signal-to-noise ratio of the DP-QPSK system under various transmission situations for bit rates (56-112-228) Gbps. The required OSNR values is presented in Table 1.3.

Figure 1.3: BER versus OSNR under back to back, without/ with compensation scenarios, (a) 14 Gbaud, (b) 28 Gbaud, (c)


56 Gbaud.

e 1.3: OSNR required values at the limit of FEC (BER of 3.8×1					
Configuration	14 Gbaud	28 Gbaud	56 Gbaud		
Btb transmission	Above FEC	12.3 dB	13 dB		
W NLC compensation	limit	13 dB	13.8 dB		
w/o NLC compensation	12 dB	15.2 dB	16.6 dB		

(b) calculate the optimal injected power and system reach for the three different symbol rates using a CDC/NLC techniques (Figures 1.4 a-b).

Transmission is linear at low power, so a doubling of power permits a doubling of reach. However, as the power increases further, the system experiences the NL transmission regime, resulting in curves that initially reach a maximum before descending.

Rbit	56-112-224 Gbps	Span length (L) [km]	75
Rsym	14-28-56 Gbaud	Attenuation (α) [dB/km]	0.22
Nbit	2 ¹²	Dispersion (D) [ps/ nm /km]	17
	-	Dispersion slope (S)	0.08
Samples / bit	64	[ps/ <i>nm</i> ² /km] Nonlinear refractive index (n2)	a <i>c t</i> a 20
Number of	262114	$[m^2/W]$	2.6×10 ⁻²⁰
samples		Nonlinear coefficient (γ)	1.31
Wavelength (λ)	1550 nm	Core effective area (A _{eff}) [µm ²]	80
N steps/span	4		
• •		EDFA Gain	15 dB
		EDFA noise figure	5 dB

B. The principle of linear and nonlinear compensation

Digital Back Propagation (DBP) is a channel inversion technique that aims to remove fiber effects by digitally emulating the propagation of the received signal through a fictitious fiber link.

D :linear operator, N :nonlinear operator, A: complex envelop of optical signal. Z: size step.

CONCLUSION / FUTURE WORK

The compensation of system performance between DSPs with and without dispersion and nonlinearity compensation, evaluating it in terms of optimal launch power and binary error rates. The results show that performance improved after DBP configuration.

 \triangleright Reduce the computational load of single-polarization DBP.

 \triangleright The nonlinear threshold power was extended by 2 dB with the compensated case.

▶ Reach BER of 1.54×10-4 and a 2.50 dB improvement in the Q-factor (10.25 dB).

 \geq Increase the transmission reach up to 5000 km.

As suggested future research, Higher-order modulation (16-QAM, 64-QAM) and SDM can boost capacity, but introduce complexities. Machine learning can optimize nonlinear compensation, simplifying the process and extending range.

REFERENCES

[1] Agrawal, G. P. (2016). Optical Communication : Its History and Recent Progress. Springer eBooks, p. 177-199.

[2] Faruk, M. S., & Savory, S. J. (2017). Digital Signal Processing for Coherent Transceivers Employing Multilevel Formats. Journal Of Lightwave Technology, 35(5), 1125-1141.

https://sciforum.net/event/ASEC2024