

The 5th International Electronic Conference on Applied Sciences

04-06 December 2024 | Online

Photometric Visual Servoing Through Sobel-Based Image Gradient Utilization

Selma Boutiba, Nadjiba Terki, Abdehamid Messaoudi Electrical Engineering department, Laboratory of IL3CUB, University of Biskra, Algeria

INTRODUCTION & AIM

Direct photometric visual servoing (PVS) has proved to be an effective method for controlling a robot's motions by utilizing pure luminance intensities rather than classical geometric features. However, these methods are sensitive

RESULTS & DISCUSSION

Figure. 1. The input images used in this study encompass three scenarios: (a) Image captured under nominal conditions, (b) Image subject to partial occlusions, (c) Image experiencing illumination variations.

to illumination changes and partial occlusions. To overcome this, we develop a new control law based on a Sobel filter to enhance the precision of image information under changing lighting conditions by extracting image gradients.

METHOD

Instead of luminance, we proposed using the gradient magnitude as visual features for the visual servoing task:

$$G = \sqrt{G_x^2 + G_y^2}$$

The interaction matrix L_{sobel} was redefined

Figure. 2. Results of Input Images Under Partial occlusion using: Photometric Visual Servoing: (a) Errors in positioning (in m and rad), Gradient Magnitude Features: (b) Errors in positioning (in m and rad).

Figure. 3. Results of Input Images Under nominal conditions using: Photometric Visual servoing: (a) Errors in positioning (in m and rad), Gradient Magnitude Features: (b) Errors in positioning (in m and rad).

Figure. 4. Results of Input Images Under Illumination variations using: Photometric Visual servoing: (a) Errors in positioning (in m and rad), Gradient Magnitude Features: (b) Errors in positioning (in m and rad).

CONCLUSION

using partial derivatives of linking the image gradients to robot motion.

A control law was implemented to minimize

the error $e_s(t) = G(t) - G^*$ between current

and desired visual features:

 $v_c = -\lambda(H(t) + \mu diag(H(t)))^{-1}L_{sobel}^T e_s(t)$

The proposed method outperformed classical

photometric visual servoing. Nonetheless,

difficulties emerge when there are big

differences in displacement and rotation, which

increases computation time and delays

convergence.

FUTURE WORK / REFERENCES

[1]F. Chaumette and S. Hutchinson, "Visual servo control. I. Basic approaches", IEEE Robotics & Automation Magazine, vol. 13, no. 4, pp. 82–90, Dec. 2006.

https://sciforum.net/event/ASEC2024