

Influence of Dispersant and Surfactant on nZVI Characterization by Dynamic Light Scattering

Filipe Fernandes^{1,2}, Ana Isabel Oliveira³, Cristina Delerue-Matos¹, Clara Grosso¹

¹REQUIMTE/LAQV, Instituto Superior de Engenharia do Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida, 431, 4249-015 Porto, Portugal

²Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal ³REQUIMTE/LAQV, Escola Superior de Saúde, Rua Dr. António Bernardino de Almeida, 400, 4200-072 Porto, Portugal

INTRODUCTION & AIM

The agrifood industries generate tremendous amounts of waste, which need to be reutilised. Here, spent coffee

RESULTS & DISCUSSION

Table 1– Size, PDI and ZP of the synthesized nZVI

Sel Instituto Superior de Engenharia do Porto P.PORTO

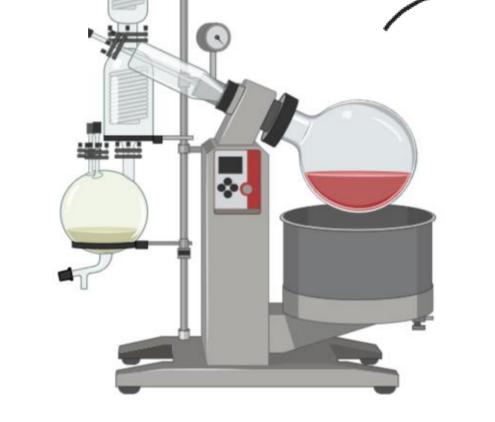
grounds (SCG) (Figure 1) and *Cistus ladanifer* L. leaves (CLL) (Figure 2) postdistillation residues were used to prepare 50:50 (v/v) hydromethanolic extracts for green zero-valent iron nanoparticles (nZVI) production. After, nZVIs' size, polydispersity index (PDI) and zeta potential (ZP) were determined through dynamic light scattering (DLS).

Figure 1 – Spent coffee grounds (*Coffea arabica* L. and *Coffea robusta* L. blend

Figure 2 – *Cistus ladanifer* L. leaves

SCG met 514.30±135.39 0.43 ± 0.08 -6.72±2.77 -19.57±0.95 SCG w 565.60±80.84 0.56 ± 0.08 2112.33±483.02 SCG met T 0.52 ± 0.14 -4.23±0.19 14.64±0.76 0.24±0.08 SCG w T -5.99±1.71 1552.00±167.78 0.66 ± 0.03 17.48 ± 0.47 **CLL** met **CLL** w 766.43±129.49 0.68 ± 0.15 -19.13 ± 1.71 **CLL met T** 1436.00±340.99 0.29 ± 0.08 -0.82 ± 0.12 **CLL w T** 13.40±4.26 0.31±0.04 -5.51±0.86 Abbreviations: met – methanol; T - Tween[®]20; w – water

• Water is a better dispersant for DLS analysis when compared to methanol (Table 1).


METHODS

1. Extraction of phenolic compounds

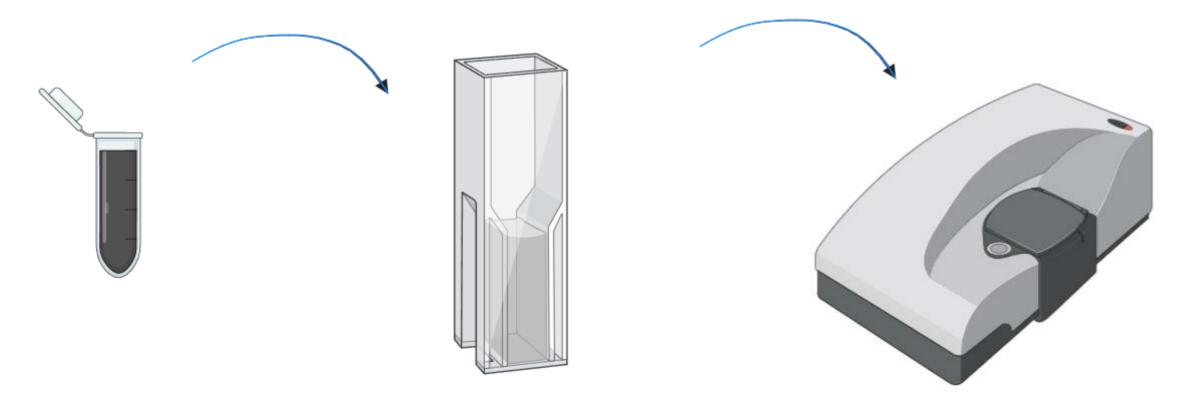
1g:50 mL 50:50 H₂O:MeOH, 1h, 40 °C

Extracts

Extract redissolved to 10 mg/mL in 50:50 H₂O:MeOH

2. nZVI synthesis

Solvent evaporated


FeCl₃ 15 min, 100 rpm Drying at 41 °C Tween[®]20 can be successfully utilized to reduce nZVI agglomeration, which can be seen in the decrease in mean particle size and PDI (Table 1).

The addition of Tween[®]20 influences the ZP of the nZVI (Table 1).

CONCLUSION

nZVI from SCG and CLL were successfully synthesized. Size, PDI and ZP were analysed via DLS. The influence of dispersant was assessed, with water being shown as a better dispersant than methanol. Tween[®]20 displayed great potential as a surfactant to limit nZVI agglomeration.

3. DLS analysis

nZVI were dispersed in either water or methanol, and Tween[®]20 was used as a surfactant

ACKNOWLEDGMENTS

The authors are grateful for the financial support from REQUIMTE/LAQV—UIDB/50006/2020⁻, UIDP/50006/2020, and LA/P/0008/2020 and the project SYSTEMIC. Filipe Fernandes thanks FCT for the financial support through a PhD fellowship (2021.06806.BD, DOI 10.54499/2021.06806.BD) and Clara Grosso is thankful for her contract (2020.03436.CEECIND/CP1596/CT0008, DOI 10.54499/2020.03436.CEECIND/CP1596/CT0008) financed by FCT/MCTES—CEEC Individual 2020 Program Contract.

REQUIMTE/LAQV INSTITUTO SUPERIOR DE ENGENHARIA DO PORTO Rua Dr. António Bernardino de Almeida, 431 • 4200-072 Porto, Portugal www.requimte.pt/laqv • www.graq.isep.ipp.pt The 5th International Electronic Conference on Applied Sciences 04-06 December 2024 Online