

The 5th International Electronic Conference on Applied Sciences

04-06 December 2024 | Online

Impact of zirconium doping and lattice oxygen release on resistive switching characteristics of metal-oxide-semiconductor devices based on sputtered $Zr_{x}Hf_{1-x}O_{2}$ gate dielectric

Rezwana Sultana*

Warsaw University of Technology, Institute of Microelectronics and Optoelectronics, Koszykowa 75, 00-662 Warsaw, Poland

rezwana.sultana@pw.edu.pl

INTRODUCTION & AIM

- Resistive random access memory (RRAM) devices are crucial in nonvolatile memory applications due to their simplicity in device fabrication, high switching speed, and low power consumption.
- RRAM devices consist of an insulator embedded between two electrodes.

- Recent studies revealed the switching nature of ZrO₂, HfO₂, SiO₂, TiO₂ for applications in RRAM devices.
- Among those oxides, research on HfO₂-based thin-films has been going on to improve the resistive switching performance of the devices.
- The oxide-based devices often show poor memory performance.
- HfO₂ doped with Zr shows improved device performances.
- The main aim of this work is to optimize the doping concentration for the best device performance.

Figure 1. Flow chart of the work

Pristine HfO₂ film deposited at 50 W, denoted as S1. The Zr_xHf_{1-x}O₂ films deposited at 1, 3, 5 and 7 of Zr power are respectively denoted as S2, S3, S4 and S5. The concentration of Zr in S2, S3 and S4 are 8, 9 and 11%.

Figure 4. (a) Differential scanning calorimetry(DSC) measurement of all samples and (b) Current versus number of cycles at the HRS and LRS of the devices

CONCLUSION

- The I V characteristics of the MOS device show that the resistive switching property performs its best when the Zr content in the film is $\sim 9\%$.
- Sc study reveals release of lattice oxygen is responsible for creation of traps and attainment of best low resistive state.
- With increasing doping concentration, fluctuations in current at low resistance state and high resistance state of the devices are improved.

REFERENCES

1. Zhang et.al, ACM Trans. Archit. Code Optim. 15 (2018) 22:1–22:26. 2. Ge et.al, ACS Appl. Matter. Interfaces. 9 (2017) 3. Wu et.al, Materials 10 (2017) 322. 4. Xia et.al, Mater. Sci. Eng. B 221 (2017) 35-40.