

The zhu milemational Lieutonic **Conference on Genes**

11-13 December 2024 | Online

sciforum-107515

Predicting Mimotopes of Amyloid beta (A β_{42}) from Non-Coding DNA as candidates for Synthetic Peptide Vaccine Design against Alzheimer's Disease

Navya Raj^{1*}, Shidhi P R², Deepthi Varughese³, Achuthsankar Nair², Pawan Dhar⁴

¹Department of Health Informatics, College of Health Sciences, Saudi Electronic University, Dammam, Kingdom of Saudi Arabia. ²University of Kerala, India; ³Mahatma Gandhi University Campus, India; ⁴Jawaharlal Nehru University, New Delhi, India.

*Presenting Author

INTRODUCTION & AIM

Until recently, the non-coding junk regions of the genome were poorly studied when compared to the functional coding regions. Six proteins (named *Eka*, meaning 'first' in Sanskrit) originating from the not-coding regions of the bacterial genome were artificially expressed, and their phenotypic implications were studied experimentally¹.

In this study, we hypothesized that the intergenic space of a genome could be a key resource for the design of novel synthetic biomolecules with therapeutic implications, which we refer to as our **Project Synthetic** Proteome (PSP) dataset.

With a handful of novel peptides which we refer to as Synpeps, predicted from not-coding regions, our interest was to computationally analyze the antigenic role of the peptides and identify the best possible candidates with applications in epitope-based vaccine design.

RESULTS & DISCUSSION

This study is the first of its kind to propose the non-coding regions of a genome as the potential source of therapeutic biomolecules.

	70000		Global	No. of
Ligands	ZDUCK	SCORE	energy	favorable
	score		(FireDock)	interactions
Aβ epitope	11.52	-86.231	-53.72	18 (Salt Bridge: Arg5: L:Asp31)
Mimo_PSP1 72	9.16	-78.299	-58.7	19
Mimo_PSP2 64	8.44	-49.119	-35.12	30 (Salt Bridge: Arg8:L: Asp31)
Mimo_PSP5 72	7.42	-92.014	-43.11	26 (Salt Bridge: Cys1:L: Asp31)
Mimo_PSP6 23	9.8	-71.723	-57.58	20 (Salt Bridge: Arg5 :L: Asp31)
Mimo_PSP6 29	9.84	-86.392	-56.10	14
Mimo_PSP7	10.14	-64.491	-51.60	16

We used Alzheimer's Disease (AD) as an example use case to analyze the scope of identifying mimotopes (a peptide that mimics the structure of an epitope) with application in Amyloid beta₄₂ (A β_{42}) immunotherapy².

AIM: This research aims to identify the potential mimotopes of the $A\beta_{42}$ peptide, from the not-coding DNA-derived peptides as candidates for Alzheimer's immunotherapy.

Overview of the methodology identifying mimotopes applicable in Amyloid-beta immunotherapy for Alzheimer's disease.

RMSD plot of mimo_PSP572 -Fab complex (red) in comparison with Fab (40NF)(black) during MD simulation.

CONCLUSION

We present an immunoinformatics approach to fine-tune an apparently useless portion of DNA into a valuable therapeutic molecule. Tapping the hidden potential of the less explored landscapes of the genome towards therapeutically therapeutic offers interesting, viable endpoints biomolecules.

FUTURE WORK / REFERENCES

Further experimentation is necessary to validate the mimotope-antibody affinity in vitro and in vivo.

1. Dhar PK, Thwin CS, Tun K, Tsumoto Y, Maurer-Stroh S, Eisenhaber F, Surana U. Synthesizing non-natural parts from natural genomic template. J Biol Eng. 2009 Feb 3;3:2. doi: 10.1186/1754-1611-3-2. PMID: 19187561; PMCID: PMC2642765.

2. Ghochikyan A. Rationale for Peptide and DNA based Epitope Vaccines for Alzheimer's Disease Immunotherapy.CNS Neurol. Disord. Drug Targets. 2009;8(2):128.