Synthesis, characterization and crystal structure of a new supramolecular system containing triorganotin(IV) and 1,3,5- Benzenetricarboxylic acid

Azadeh Tadjarodi*, Homayoun Gholipour
Research Laboratory of Inorganic Materials Synthesis, Department of Chemistry, Iran University of Science and Technology, Narmak, Tehran
16846-13114, Iran
E-mail: tajarodi@,iust.ac.ir

Abstract

Herein, triorganotin(IV) complex $\mathrm{C}_{53} \mathrm{H}_{57} \mathrm{NO}_{8} \mathrm{Sn}_{2}$ was prepared by the reaction of triphenyltin(IV) chloride, triethylamine and 1,3,5- benzenetricarboxylic acid in 1:3:3 molar ratio in MeOH. The complex is characterized by FT-IR spectroscopy, $\left({ }^{1} \mathrm{H},{ }^{13} \mathrm{C},{ }^{119} \mathrm{Sn}\right)$ NMR and X-ray single crystal diffraction. This compound crystallizes in the monoclinic system, space group $P 2_{1} / \mathrm{c}$ with $\mathrm{Z}=4$. The unit cell dimensions for complex are: $a=15.157(3) \AA, b=20.802(4) \AA$ and $c=15.719(3) \AA$, $\beta=105.12(3)^{\circ}$.

Keywords: Organotin(IV), Crystal structure, 1,3,5- Benzenetricarboxylic acid, Spectroscopy.

1. Introduction

Organotin(IV) carboxylates have attracted much attention, owing to the enormous variety of interesting structural topologies and their ecological and biological chemistry activities.

The ecological and biological chemistry of organotin(IV) carboxylates have been the subjects of interest for some time due to their increasingly extensive use in industry and agriculture. The biochemical activity of organotin carboxylates is influenced significantly by the structure of the molecule and the coordination number of the tin atoms. In this work, we selected 1,3,5benzenetricarboxylic acid (H_{3} TMA) as ligand because of having three carboxylic acid groups.

Herein, we report the synthesis of triorganotin(IV) complex, $\mathrm{C}_{53} \mathrm{H}_{57} \mathrm{NO}_{8} \mathrm{Sn}_{2}$, by the reaction of triphenyltin(IV) chloride, triethylamine and 1,3,5- benzenetricarboxylic acid in 1:3:3 molar ratio in MeOH. The complex is characterized by FT-IR spectroscopy, ($\left.{ }^{1} \mathrm{H},{ }^{13} \mathrm{C},{ }^{119} \mathrm{Sn}\right)$ NMR and X-ray single crystal diffraction. This compound crystallizes in the monoclinic system, space group $P 2_{1} / \mathrm{c}$ with $\mathrm{Z}=4$. The unit cell dimensions for complex are: $\mathrm{a}=15.157(3) \AA, \mathrm{b}=20.802(4) \AA$ and c $=15.719(3) \AA, \beta=105.12(3)^{\circ}$.

2. Experimental

All the chemicals were purchased from Merck Co. and were used as received.

2.1. Synthesis of $\left[\left(\mathrm{SnPh}_{3}\right)_{2}\left[(\mathrm{TMA})\left(\mathrm{Et}_{3} \mathrm{~N}\right)\right]\right] .\left(\mathrm{CH}_{3} \mathrm{OH}\right)_{2}$

This complex was prepared by the branch tube method. Triphenyltin(IV) chloride (1.5 mmol), triethylamine $(420 \mu \mathrm{~L})$ and H_{3} TMA $(0.5 \mathrm{mmol})$ was placed in one arm of the branched tube. Methanol was carefully added to fill both branches of tube. After that, the tube wrapped and the arm containing materials immersed in a bath at $60^{\circ} \mathrm{C}$ while the other was at ambient temperature. After 5 days, white crystals (m.p. $=230^{\circ} \mathrm{C}$) had appeared in the cooler arms of branch tube.

IR (KBr, cm^{-1}): 3296(s), 3064(s), 2678(s), 1622(s), 1429(s), 449(m)
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{DMSO}_{\mathrm{d}}^{6}, \mathrm{ppm}\right) \delta \mathrm{H}: 1.06\left(\mathrm{t}, 9 \mathrm{H}, \mathrm{CH}_{3}, \mathrm{~J}=7\right), 2.82\left(\mathrm{q}, 6 \mathrm{H}, \mathrm{CH}_{2}, \mathrm{~J}=7\right), 3.17\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$, 7.34-7.87 (m, 30H, C C_{5}), 8.39(s, 3H)
${ }^{13}$ C-NMR (DMSO- $\left.\mathrm{d}_{6}, ~ p p m\right) ~ \delta C: ~ 9.4, ~ 45.3, ~ 48.6, ~ 127.6, ~ 128.1, ~ 128.5, ~ 132.4, ~ 135.8, ~ 136.2, ~ 136.5, ~$ 143.9, 168.4
${ }^{119}$ Sn-NMR (DMSO-d ${ }_{6}$, ppm) δ Sn: 257.47

3. Results and discussion

In the FT-IR spectrum, the appeared strong absorption at $449 \mathrm{~cm}^{-1}$, which is absent in the spectrum of the free ligand, is assigned to the $\mathrm{Sn}-\mathrm{O}$ stretching vibration. Two observed absorption bands in the ranges of $1623-1637 \mathrm{~cm}^{-1}$ and $1307-1326 \mathrm{~cm}^{-1}$ can be assigned to the asymmetric and the symmetric vibrations of COO group, respectively.

In the ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum, the observed resonances at $\delta=1.06$ and $\delta=2.82 \mathrm{ppm}$ are related to the protons of methyl and methylene of triethylamine, respectively. The appeared resonance observed at $\delta=3.17 \mathrm{ppm}$ is attributed to the proton of methanol. The observed resonances at $\delta=7.34-8.87 \mathrm{ppm}$ can be assigned to the protons of phenyl groups with the same positions as in the ligand. The appeared resonance at $\delta=8.39 \mathrm{ppm}$, related to the protons of benzene carboxylic acid. In the ${ }^{13} \mathrm{C}$ NMR spectrum, the singlet resonance at 168.4 is owing to the COO groups in the complex. The observed resonances at $9.4,45.3,48.6$ and $127.6-143.9 \mathrm{ppm}$ are related to CH_{3} and CH_{2} of $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{3}$ of methanol and aromatic rings in the complex, respectively. There is only one resonance at 258.4 ppm in the ${ }^{119} \mathrm{Sn}$ NMR spectrum.

This complex crystallizes in the monoclinic system, space group $P 2_{1} / \mathrm{c}$ with $\mathrm{Z}=4$. The unit cell dimensions for complex are: $a=15.157(3) \AA, b=20.802(4) \AA$ and $c=15.719(3) \AA, \beta=105.12(3)^{\circ}$. The molecular structure of the title compound is shown in Fig. 1. The crystallographic data is listed in Table 1. Selected bond distances and angles are given in Table 2.

Table 1. Crystallographic and structure refinements data for title compound.

Empirical formula	$\mathrm{C}_{53} \mathrm{H}_{57} \mathrm{~N} \mathrm{O}_{8} \mathrm{Sn}_{2}$
Formula weight	1073.42
Temperature (K)	$120(2)$
Wavelength (\AA)	0.71073
Crystal system	Monoclinic
Space group	$P 2_{1} / \mathrm{c}$
Unit cell dimensions	
	$a=15.157(3) \AA$
	$b=20.802(4) \AA$
	$c=15.719(3) \AA$
	$\beta=105.12(3)^{\circ}$
Volume $\left(\AA^{3}\right)$	
Z	$4784.6(16)$
Calculated density $\left(\mathrm{Mg} / \mathrm{m}^{3}\right)$	4
Absorption coefficient $\left(\mathrm{mm}^{-1}\right)$	1.490
F(000)	1.099
Theta range for data collection $\left({ }^{\circ}\right)$	2184
Reflections collected / unique	2.38 to 25.00
Max. and min. transmission	$22054 / 8377[\mathrm{R}(\mathrm{int})=0.1525]$
Refinement method	0.9270 and 0.7941
Final R indices [I>2sigma(I) $]$	Full-matrix least-squares on F^{2}
R indices (all data)	$R_{1}=0.0779, \mathrm{w} R_{2}=0.1273$
	$R_{1}=0.1463, \mathrm{w} R_{2}=0.1426$

Bond lengths and angles within the aromatic rings are in good agreement with those expected for sp^{2} hybridization of aromatic carbon atoms. The $\mathrm{Sn}-\mathrm{O}$ (carboxylate oxygen atom) bond lengths are 2.163(5)-2.267(7) \AA and relative $\mathrm{Sn}-\mathrm{C}$ bond lengths are 2.094(11) $-2.157(10) \AA$. These bond lengths and angles are similar to those of the complexes reported [11]. The distances of $\mathrm{Sn}-\mathrm{O}$ (solvent (methanol) oxygen atom) bond is $2.487(6) \AA$.

Fig. 1 The molecular structure of the title compound.

Table 2. Selected bond distances (\AA) and bond angles (${ }^{\circ}$) for title compound.

```
Sn(1)-C(7)
    2.118(10)
Sn(1)-C(13)
2.132(10)
Sn(1)-C(1)
Sn(1)-0(5)#1
Sn(1)-0(1)
2.143(9)
    2.143(9)
207(7)
Sn(2)-C(28)
Sn(2)-C(40)
    2.094(11)
    137(10)
Sn(2)-C(34)
    2.157(10)
Sn(2)-0(3)
    2.163(5)
Sn(2)-0(7)
2.487(6)
0(5)#1-Sn(1)-0(1)
172.2(2)
C(13)-Sn(1)-0(1)
    90.0(3)
C(13)-Sn(1)-0(1)
    86.2(3)
C(7)-Sn(1)-0(1)
    91.9(3)
C(7)-Sn(1)-0(5)#1
    91.0(3)
C(13)-Sn(1)-0(5)#1
    93.3(3)
C(1)-Sn(1)-0(5)#1
    86.0(3)
```


Acknowledgements

Financial support by Iran University of Science and Technology is gratefully acknowledged.

References

1. S.K. Hadjikakou, N. Hadjiliadis, Coord. Chem. Rev., 253 (2009) 235.
2. S. Tabassum, C. Pettinari, J. Organomet. Chem., 691 (2006) 1761.
3. M. Gielen, M. Biesemans, D. de Vos, R. Willema, J. Inorg. Biochem., 79 (2000) 139.
4. H. D. Yin, G. Li, Z. J. Gao, H. L. Xu, J. Organomet. Chem., 691 (2006) 1235.
5. X. Xiao, D. Du, M. Tian, X. Han, J. Liang, D. Zhu, L. Xu, J. Organomet. Chem., 715 (2012)
6.
7. D. Du, Z. Jiang, C. Liu, D. Zhu, L. Xu, J. Organomet. Chem., 696 (2011) 2549.
