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“Abstract.” With the aim to find out the structural features for the MAO inhibitory activity and 

selectivity, in the present communication we report the design, synthesis and pharmacological 

evaluation of a new series of 8-bromo-6-methyl-3-phenylcoumarin derivatives without substituent and 

with different number of methoxy substituent in the 3-phenyl ring. The substituent in this new scaffold 

was introduced in the 3’, 4’ and/or 5’ positions of the 3-phenyl ring of the coumarin moiety. The 

synthesized compounds 3-6 were evaluated as MAO A and B inhibitors using R-(-)-deprenyl 

(selegiline) and Iproniazide as reference inhibitors, showing, most of them, MAO-B inhibitory 

activities in the nanomolar range. Compounds 3 (11.05±0.81 nM), 4 (3.23±0.49 nM) and 5 (7.12±0.01 

nM) show higher activity than selegiline (IC50 = 19.60 nM), and high MAO-B selectivity with 9,050-

fold, 30,960-fold and 14,045-fold inhibition levels, with respect to the MAO-A isoform.  

 

*To whom correspondence should be addressed – e-mail: mariajoao.correiapinto@rai.usc.es  

 

Introduction 

Coumarins (or benzopyrones) are a large family of compounds, of natural and synthetic origin, that 

show numerous biological activities.1 Recent studies pay special attention to their antioxidative, 

anticarcinogenic and enzymatic inhibition properties.2,3,4,5,6 In regard to the monoamine oxidase (MAO) 

inhibition,7,8 the recent findings revealed that MAO-A and MAO-B affinity and selectivity can be 

efficiently modulated by appropriate substitutions in the coumarin ring, in particular in the 3/4 and 6/7 
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positions.9,10,11,12,13  

On the other hand, the resveratrol, (3,4',5-trihydroxystilbene), is a natural polyphenolic compound 

present in grapes and red wine, which possesses a variety of biological activities including 

antiinflammatory, antioxidant, anticancer and cardioprotective properties and enzyme 

inhibition.14,15,16,17,18,19  

Due to that, this compound has attracted much interest in the past decade, and recently it has been 

demonstrated that resveratrol also is proved to be MAO inhibitory activity.15,20 

Mono amine oxidases (MAOs) are flavoenzymes bound to the outer mitochondrial membrane and 

are responsible for the oxidative deamination of neurotransmitters and dietary amines.21,22 Two 

isoforms, namely MAO-A and MAO-B, have been identified on the basis of their amino acid sequences, 

three-dimensional structure, substrate preference and inhibitor selectivity.23,24 MAO-A has a higher 

affinity for serotonin and noradrenaline whereas MAO-B preferentially deaminates phenylethylamine 

and benzylamine.25 These properties determine the clinical importance of MAO inhibitors. Selective 

MAO-A inhibitors such as clorgyline (irreversible) and moclobemide (reversible) are used in the 

treatment of neurological disorders such as depression,26,27 whereas the selective and irreversible MAO-

B inhibitors such as selegiline and rasagiline are useful in the treatment of Parkinson’s28,29 and 

Alzheimer’s diseases.30,31
 

In this context, and in an attempt to develop novel MAO-B selective inhibitors, we have previously 

synthesized 3-aryl coumarin derivatives in which are present both, the coumarin and the 

resveratroltemplates, compounds that have show very high MAO-B inhibitory activity and selectivity.7,8 

In the present work, a variety of substituents with different size and lipophilicity were introduced in 

both aromatic rings and the new compounds were evaluated as MAO inhibitors.  
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Results and discussion 

In the present work we designed and evaluated a series of 8-bromo-6-methyl-3-phenylcoumarin 

derivatives with different number of methoxy substituent in the 3-phenyl ring. The compounds were 

synthesized according to Scheme 1 and details are given in the Experimental section. 

The prepared series of compounds proved to be selective inhibitors of the MAO-B isoenzyme. The 

compound 4, with one methoxy substituent in the phenyl ring, is by itself very active and selective to 

MAO-B isoenzyme. Compounds 3 and 5 (without any substituent and with two methoxy groups) have a 

MAO-B IC50 on the same activity range. This three compounds have similar inhibitory activity of the R-

(-)-deprenyl (reference MAO-B inhibitor) and are much more selective than this one. The most potent 

molecule of this family is the compound 4, with one methoxy group in 4’ position (IC50 = 3.23±0.49 

nM). This one is six times more active and several times more selective iMAO-B than the R-(-)-

deprenyl. Compound 6, with 3-methoxy groups, loses activity (activity on the micromolar range) and 

selectivity in respect to the mono and dimethoxy derivatives (compounds 4 and 5, respectively). 

Compounds 3-5 don’t present MAO-A inhibitory activity for the highest concentration tested (100 µM). 

This iMAO-B selectivity is an important factor to discriminate the potential therapeutic application of 

this kind of molecules.  

Comparing the iMAO-B activities of 3 and 4, the introduction of one methoxy substituent in 4’ 

position of the molecule increases the inhibitory activity. When the phenyl ring is substituted with two 

methoxy groups in the 3’ and 5’positions, compound 5, the iMAO-B activity is even better than the non-

substituted. When the number of methoxy substituent increases to three, compound 6, it decreases the 

enzymatic inhibitory activity to the micromolar range, and the compound loses the selectivity. The 

presence of methoxy substituent in the 3-phenyl ring seems to be important to modulate and improve the 

inhibitory enzymatic activity of the 6-methyl-3-phenylcoumarins. 
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The inhibitory MAO activity of compounds 3-6 was evaluated in vitro by the measurement of the 

enzymatic activity of human recombinant MAO isoforms in BTI insect cells infected with 

baculovirus.7,8,32 Then, the IC50 values and MAO-B selectivity ratios [IC50 (MAO-A)]/[IC50 (MAO-B)] 

for inhibitory effects of both new compounds and reference inhibitors were calculated (table 1).33 

 

Table 1. MAO-A and MAO-B inhibitory activity results for compounds 3-6 and reference compounds. 

Compounds MAO-A 

IC50 

MAO-B 

IC50
 

Ratio 

3 * 11.05±0.81 nM > 9,050b 

4 * 3.23±0.49 nM > 30,960b 

5 * 7.12±0.01 nM > 14,045b 

6 31.20±2.09 µM 4.89±0.22 µM  6.4 

R-(-)-deprenyl 67.25±1.02 µMa 19.60±0.86 nM 3,431 

Iproniazide 6.56±0.76 µM 7.54±0.36 µM 0.87 

 

*Inactive at 100 µM (highest concentration tested). At higher concentrations the compounds precipitate. 

a
P < 0.01 versus the corresponding IC50 values obtained against MAO-B, as determined by 

ANOVA/Dunnett’s.  

bValues obtained under the assumption that the corresponding IC50 against MAO-A is the highest 

concentration tested (100 µM). 

 

Chemistry. The coumarin derivatives 3-6 were efficiently synthesized according to the synthetic 

protocol outlined in Scheme 1. 

The treatment of the precursor 1 with N-bromosuccinimide (NBS) under reflux of CCl4, using 2,2’-

azo-bis-iso-butyronitrile (AIBN) as catalyst, afforded the bromo derivative 2 with a yield of 44%. The 
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obtained product is purified by flash chromatography, using a mixture of hexane/ethyl acetate, in a 

proportion 95:5, as eluent. The most activated position on the compound 1 is the ortho in respect to the 

hydroxyl substituent and the bromination occurs there. So, the bromination on the reactive 1 allows 

discriminating the position of the bromo atom on the final coumarin’s benzenic ring.  

The preparation of these 8-bromo-6-methyl-3-phenylcoumarins was performed via the classical 

Perkin reaction.7,8,34,35,36 This reaction occurs by condensation of the 3-bromo-5-methylsalicylaldehyde 

2 and the conveniently substituted phenylacetic acids, with N,N’-dicyclohexylcarbodiimide (DCC) as 

dehydrating agent, in reflux of DMSO, during 24 hours (scheme 1). The reaction to obtain 3-6 is very 

clean and the yields are between 45-50%.30-33 The obtained products are easy to purify by flash 

chromatography, using a mixture of hexane/ethyl acetate in a proportion 9:1 as eluent.  
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Scheme 1. Synthetic strategy for the prepared compounds. (a) NBS, AIBN, CCl4, reflux, 18h (b) 

phenylacetic acids, DCC, DMSO, 110 ºC, 24h.  

 

MAO inhibition assay. The potential effects of the test drugs on hMAO activity were investigated by 

measuring their effects on the production of hydrogen peroxide from p-tyramine (a common substrate 

for both hMAO-A and hMAO-B), using the 10-acetyl-3,7-dihydroxyphenoxazine as reagent and 

microsomal MAO isoforms prepared from insect cells (BTI-TN-5B1-4) infected with recombinant 

baculovirus containing cDNA inserts for hMAO-A or hMAO-B. 
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The production of H2O2 catalyzed by MAO isoforms can be detected using the previously mentioned 

reagent, a non-fluorescent, highly sensitive and stable probe that reacts with H2O2 in the presence of 

horseradish peroxidase to produce a fluorescent product: resorufin. In this study hMAO activity was 

evaluated using the above method following the general procedure described previously by us.37,38 

The tested drugs (new compounds and reference inhibitors) inhibited the control enzymatic MAO 

activities and the inhibition was concentration dependent. The corresponding IC50 values and MAO-B 

selectivity ratios [IC50 (MAO-A)]/[IC50 (MAO-B)] are shown in Table 1. 

 

Conclusions 

These hybrid compounds with resveratrol-coumarin skeleton show high selectivity to MAO-B 

isoenzyme and activity in the nanomolar range. We had prepared new coumarin derivatives with 

inhibitory activity comparable to those of selegiline, which is used as reference inhibitors and has a very 

high MAO-B selectivity. Introduction of one or two methoxy groups in the phenyl ring improves the 

activity, giving more active and selective compounds than the reference ones. These findings have 

encouraged us to continue our investigations into the design of more potent and selective analogs by 

introducing appropriate substituent into the coumarin scaffold, potential medicines for the Parkinson’s 

disease. These modifications, which we studying more deeply, can improve the pharmacologic profile 

of the synthesized coumarins. 

 

Experimental section 

Chemistry. Melting points were determined using a Reichert Kofler thermopan or in capillary tubes 

on a Büchi 510 apparatus and are uncorrected. 1H NMR spectra were recorded on a Bruker AMX 

spectrometer at 300 and 75.47 MHz, respectively, using TMS as internal standard (chemical shifts in � 

values, J in Hz). Silica gel (Merck 60, 230–00 mesh) was used for flash chromatography (FC). 
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Analytical thin layer chromatography (TLC) was performed on plates precoated with silica gel (Merck 

60 F254, 0.25 mm). 

 

General procedure for the preparation of 3-bromo-2-hydroxy-5-methylbenzaldehyde (2). A 

solution of 1 (0.8 g, 5.88 mmol), NBS (1.25 g, 7.05 mmol) and a catalytic quantity of AIBN in CCl4 was 

stirred under reflux for 18h. The result solution was filtered to remove the succinimide. The solvent was 

evaporated under vacuum and purified by FC (hexane/ethyl acetate 95:5) to give 2 (0.73 g, 58%) as a 

white solid. Mp 64-5 oC (biblio. 64-6 ºC). 1H NMR (CDCl3) δ (ppm), J (Hz): 2,34 (s, 3H, -CH3), 7,33 

(d, 1H, H-4, J=2.0), 7,62 (d, 1H, H-6, J=2.0), 9,81 (s, 1H, -CHO). 

General procedure for the preparation of 8-bromo-6-methylcoumarins (3-6). A solution of 3-

bromo-2-hydroxy-6-methylbenzalhehyde (2, 0.12 g, 0.56 mmol) and phenylacetic acid (0.095 g, 0.70 

mmol) in DMSO and DCC (0.18 g, 0.87 mmol) was heated in an oil-bath at 100-110 ºC for 24h. 

Triturate ice (20 mL) and acetic acid (3.0 mL) were added to the reaction mixture. After keeping it at 

room temperature for 2h, the mixture was extracted with ether (3x 25 mL). The organic layer was 

extracted with sodium bicarbonate solution (50 mL, 5%) and then water (20 mL). The solvent was 

evaporated under vacuum and the dry residue was purified by FC (hexane/ethyl acetate 9:1) to give 3 

(0.06 g, 45%) as a white solid. Mp 144-5 ºC. 1H NMR (CDCl3) δ (ppm), J (Hz): 2,41 (s, 3H, -CH3), 3,86 

(s, 3H, -OCH3), 6,98 (d, 2H, H-3’ and H-5’, J=7.1), 7,26 (s, 1H, H-7), 7,56 (s, 1H, H-5), 7,65-7,69 (m, 

3H, H-2’, H-6’ and H-4). 

8-Bromo-6-methyl-3(4’-methoxyphenyl)coumarin (4). Yield: 47%. Mp: 144-5 oC. 1H NMR (CDCl3) 

δ (ppm), J (Hz): 2.40 (s, 3H, -CH3), 3.87 (s, 3H, -OCH3), 6.98 (d, 2H, H-3’, H-5’, J=7.10), 7.26 (s, 1H, 

H-7), 7.56 (s, 1H, H-5), 7.67 (dd, 3H, H-4, H-2’, H-6’, J=6.93 and J=1.08). 

8-Bromo-6-methyl-3(3’,5’-dimethoxyphenyl)coumarin (5). Yield: 46%. Mp: 165-6 oC. 1H NMR 

(CDCl3) δ (ppm), J (Hz): 2.40 (s, 3H, -CH3), 3.83 (s, 6H, (-OCH3)2), 6.51 (t, 1H, H-4’ J=2.26), 6.83 (d, 

2H, H-2’, H-6’, J=2.27), 7.26 (s, 1H, H-7), 7.57 (s, 1H, H-5), 7.70 (s, 1H, H-4). 
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8-Bromo-6-methyl-3(3’,4’,5’-trimethoxyphenyl)coumarin (6). Yield: 50%. Mp: 167-8 oC. 1H NMR 

(CDCl3) δ (ppm), J (Hz): 2.41 (s, 3H, -CH3), 3.91 (d, 9H, (-OCH3)3, J=5.75), 6.92 (s, 2H, H-2’, H-6’), 

7.28 (d, 1H, H-7, J=6.5), 7.59 (d, 1H, H-5, J=1.3), 7.70 (s, 1H, H-4). 

 

Biological assay. Enzymatic MAO-A and MAO-B activity of compounds was determined by a 

fluorimetric method following a previously described protocol.39 Briefly, 0.1 mL of sodium phosphate 

buffer (0.05 M, pH 7.4) containing various concentrations of the test drugs and appropriate amounts of 

recombinant hMAO-A or hMAO-B and adjusted to obtain in our experimental conditions the same 

reaction velocity in the presence of both isoforms were incubated for 15 min at 37 ºC in a flat-black-

bottom 96-well microtest plate placed in the dark fluorimeter chamber. After this incubation period, the 

reaction was started by adding (final concentrations) 200 µM of 10-acetyl-3,7-dihydroxyphenoxazine 

reagent (Amplex Red assay kit), 1 U/ml horseradish peroxidase and 1 mM p-tyramine. The production 

of H2O2 and, consequently, of resorufin was quantified at 37 °C in a Multi-Detection microplate 

fluorescence reader (FLX800) based on the fluorescence generated (excitation, 545 nm, emission, 590 

nm) over a 15 min period, during which the fluorescence increased linearly. 

Control experiments were carried out simultaneously by replacing the test drugs (new compounds 

and reference inhibitors) with appropriate dilutions of the vehicles. In addition, the possible capacity of 

the above test drugs to modify the fluorescence generated in the reaction mixture due to non-enzymatic 

inhibition was determined by adding these drugs to solutions containing only the Amplex Red reagent in 

a sodium phosphate buffer. 

To determine the kinetic parameters of hMAO-A and hMAO-B (Km and Vmax), the corresponding 

enzymatic activity of both isoforms was evaluated (under the experimental conditions described above) 

in the presence of a number of p-tyramine concentrations. 
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The specific fluorescence emission (used to obtain the final results) was calculated after subtraction 

of the background activity, which was determined from vials containing all components except the 

MAO isoforms, which were replaced by a sodium phosphate buffer solution. 
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