

The 3rd International Electronic **Conference on Catalysis Sciences**

23-25 April 2025 | Online

Cu-modified Zn₆In₂S₉ photocatalyst for hydrogen production under visible-light irradiation

Shota Fukuishi1, Hideyuki Katsumata1, Ikki Tateishi2, Mai Furukawa1, and Satoshi Kaneco1 Department of Applied Chemistry, Graduate School of Engineering, Mie University, Tsu, Mie, Japan 1 Global Environment Center for Education & Research, Mie University, Tsu, Mie, Japan 2

emit carbon dioxide.

Water **Fuel cell**

• Advantages of Zn₆In₂S₉

- Narrow band gap
 Visible light responsiveness
- Chemical stability
 Unique two-dimensional layered structure
- Cost can be reduced compared to ZnIn₂S₄

This study

The aim of this study was to improve the photocatalytic activity of indium zinc sulfide while reducing the use of expensive indium.

RESULTS & DISCUSIONS

• The hydrogen production rate of $Zn_{5,7}Cu_{0,3}In_2S_9$ is approximately five times higher than that of $Zn_6In_2S_9$. • Fig. 4 showed good hydrogen production activity

• Fig. 5 showed that the trend was consistent with DRS spectrum results, confirming that hydrogen production occurs from the photocatalyst.

Photocatalytic activity

hole pairs is suppressed.

region was expanded by adding copper.

response of photocatalysts.

production with Zn_{5.7}Cu_{0.3}In₂S₉.

①Electrons and holes are separated by light irradiation. (2) The holes oxidize the sacrificial agent, producing protons. ③Photoexcited electrons in the conduction band reduce H⁺ on Pt, producing hydrogen.

• It can be seen that the addition of copper results in a lower interfacial resistance than the original indium zinc sulfide.

• The current value of $Zn_{5.7}Cu_{0.3}In_2S_9$ was the highest, indicating high charge transfer efficiency.

adding copper.

MDPI

0.000

0.045

0.090

0.135

CONCLUSION

- The hydrogen production rate of $Zn_{5.7}Cu_{0.3}In_2S_9$ is approximately five times higher than that of $Zn_6In_2S_9$.
- Zn_{5.7}Cu_{0.3}In₂S₉ showed high stability.

• The addition of copper caused an expansion of the light absorption range and suppression of recombination of electron-hole pairs.

• The addition of copper did not change the structure.

FUTURE WORK / REFERENCES

• J. Ye, Z. Fan, Z. Wang, Y. Wang, J. Li, Y. Xie, Y. Ling and Y. Chen, Fuel, 373(2024)132401.

ECCS2025.sciforum.net