
Machine learning assisted material development 

via Laser powder bed fusion process

Alireza Moradi1, Sanae Tajalli Nobari2, Amir Behjat3, Mohammad 

Taghian3, Luca Iuliano3,4, Abdollah Saboori3,4

1 Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca 

Degli Abruzzi 24, 10129 Torino, Italy
2 Department of Applied Science and Technology, Politecnico di Torino, Corso Duca Degli 

Abruzzi 24, 10129 Torino, Italy
3 Department of Management and Production Engineering, Politecnico di Torino, Corso Duca 

degli Abruzzi 24, 10129 Torino, Italy
4 Integrated Additive Manufacturing Center (IAM@PoliTo), Politecnico di Torino, Corso 

Castelfidardo 51, 10129 Torino, Italy

The 2nd International Electronic Conference 

on Metals

5 - 7 May



2

Outline Introduction

Materials and Methods

Results and Discussion

Conclusions

Thesis Outcomes 



3

Additive Manufacturing:

➢ Producing components from a digital CAD model

➢ Adding material layer by layer

Key benefits: 

Poor surface quality

Limited available materials

Low production rate

Open challenges: 

✓ Design freedom

✓ Material efficiency

✓ Customization

How can we turn these challenges into future strengths?

Introduction
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SOLUTIONS

Introduction

Challenges and solutions

Material development

Artificial 

Intelligence

Machine 

Learning

Deep 

Learning

Process Parameter Optimization 

Machine Learning

➢ Process parameter optimization

➢ In-situ monitoring

➢ Post process characterization
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Laser Powder Bed fusion

Mechanism explanation: A laser beam is used to selectively melt fine metal powder 

and build up fully-dense parts layer-by-layer

Recoater

Part

Laser Scanner

Powder Bed

Powder

Container
Powder

Collector
+Z Build

Piston

Building

Platform

AISI316L-Cu

Building Chamber

Materials and Methods

Powder Preparation

Jar milling (97.5%AISI316L+2.5%Cu)
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Design Of Experiment:

64 different process parameters

➢ Power
100, 190, 200, 270, 340 W

➢ Scan Speed
400, 600, 800, 1000 mm/s

➢ Hatch Distance
0.1, 0.11, 0.12, 0.13, 0.2 mm

➢ Layer Thickness
0.03 mm

Materials and Methods
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DESIGN OF EXPERIMENTS: 64 Cubic Specimens

Materials and Methods

Powder Feedstock: AISI316L-2.5%Cu

Metal AM Technology: L-PBF

Analyzed conditions: As-Built

Characterizations: Powder,  Density
Process Parameter Optimization, 
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Volumetric Energy Density (VED): 33 ~ 283 J/mm3

 𝑉𝐸𝐷 =
𝑃

𝑣. ℎ. 𝑡

Layer Thickness

Power

Hatch Distance

Scan Speed

Min. Relative Density: 90.9

P: 100 (W), v: 1000 (mm/s), h: 0.1 (mm)

Max. Relative Density: 99.9

P: 190 (W), v: 800 (mm/s), h: 0.12 (mm)

Splitting the data into 
training and testing

Analysing the 
three most 
effective 

hyperparameters

Choosing the 
best algorithm

Prediction

Applying Machine Learning models

Result and Discussion
RelativeDensity vs VED
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Mean Absolute Error

➢Average absolute deviation for each statistic
➢The same unit as the target variable

➢The lower, the better! 

Coefficient of Determination 

−∞ < 𝑅2 < +1

➢ Level of variation in the target variable by 

changes in the input variables

Effect of hyperparameters on prediction accuracy

Result and Discussion
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Effect of hyperparameters on prediction accuracy
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Result and Discussion



11

Effect of hyperparameters on prediction accuracy
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R2

• R2 or MAE alone can not be considered for 

comparison of prediction accuracy.

• Although the training size of 90% has the highest 

R2, its MAE value is high.

• The best algorithm was SVR, with a training size 

of 80%.

Actual Relative Density (%)
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Result and Discussion

Model Verification(Comparison of actual and predicted density using SVR at 80% training size based 
on VED)

Actual and Predicted Relative Density vs. VED
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VED (J/mm3)

N. point
Actual Relative 

Density (%)

Predicted Relative 

Density (%)
Error (%)

1 90.90 92.21 1.45

2 95.00 95.03 0.04

3 97.84 97.78 0.06

4 99.15 98.93 0.22

5 98.87 99.06 0.19

6 98.52 99.05 0.53

7 98.89 97.71 1.20

8 98.46 98.07 0.40

9 97.81 98.19 0.39

10 96.44 96.64 0.21

11 97.88 96.22 1.69

12 98.58 97.48 1.12

13 97.38 97.28 0.10

14 97.05 97.42 0.38

15 97.74 96.45 1.32

✓ Average Error: 0.62 %
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Result and Discussion

Process parameters defect content relationship

BR=

BR  is build rate (mm3/s)
v is speed(mm/s)

h is hatch distance (mm)
t is layer thickness(mm)

𝐯. 𝐡. 𝐭 (productivity)

point1

point2

• Point 1 
Porosity: 0.4% 

productivity: 3.04 mm3/s

• Point 2

porosity: 0.9%
productivity: 5.10 mm3/s
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Conclusions

1. ML techniques accurately predicted the relationship between process parameters and defect 

content and enhanced the building rate, thus addressing quality and productivity issues in the L-

PBF process. 

2. The SVR model (training size: 80%) was the best model for predicting the relationship between 

process parameters and defect content.

3. The SVR model achieved a 0.62% average error, demonstrating its reliability for optimizing 

process parameters in L-PBF and minimizing material waste.
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Any Question!

Machine learning assisted material development 

via Laser powder bed fusion process

Alireza Moradi1, Sanae Tajalli Nobari2, Amir Behjat3, Mohammad 

Taghian3, Luca Iuliano3,4, Abdollah Saboori3,4

1 Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca 

Degli Abruzzi 24, 10129 Torino, Italy
2 Department of Applied Science and Technology, Politecnico di Torino, Corso Duca Degli 

Abruzzi 24, 10129 Torino, Italy
3 Department of Management and Production Engineering, Politecnico di Torino, Corso 

Duca degli Abruzzi 24, 10129 Torino, Italy
4 Integrated Additive Manufacturing Center (IAM@PoliTo), Politecnico di Torino, Corso 

Castelfidardo 51, 10129 Torino, Italy


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16

