

The 2nd International Electronic Conference on Metals

5 - 7 May

Machine learning assisted material development via Laser powder bed fusion process

Alireza Moradi¹, Sanae Tajalli Nobari², Amir Behjat³, Mohammad Taghian³, Luca Iuliano^{3,4}, Abdollah Saboori^{3,4}

¹ Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca Degli Abruzzi 24, 10129 Torino, Italy
² Department of Applied Science and Technology, Politecnico di Torino, Corso Duca Degli Abruzzi 24, 10129 Torino, Italy
³ Department of Management and Production Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
⁴ Integrated Additive Manufacturing Center (IAM@PoliTo), Politecnico di Torino, Corso Castelfidardo 51, 10129 Torino, Italy

IAM @Polito Outline

Introduction

Materials and Methods

Results and Discussion

Conclusions

Thesis Outcomes

IECME 2025 Conference

Introduction

- Producing components from a digital CAD model
- Adding material layer by layer

IECME 2025

- ✓ Design freedom
- ✓ Material efficiency
- \checkmark Customization

Open challenges:

▲ Poor surface quality

- ▲ Limited available materials
- ▲ Low production rate

How can we turn these challenges into future strengths?

Introduction

Challenges and solutions

Materials and Methods

Powder Preparation

Jar milling (97.5%AISI316L+2.5%Cu)

Laser Powder Bed fusion

Mechanism explanation: A laser beam is used to **selectively melt** fine metal **powder** and build up fully-dense parts **layer-by-layer** Laser Scanner

IECME

5

Materials and Methods

Design Of Experiment: 64 different process parameters

Power
 100, 190, 200, 270, 340 W

Scan Speed
 400, 600, 800, 1000 mm/s

- ➢ Hatch Distance 0.1, 0.11, 0.12, 0.13, 0.2 mm
- Layer Thickness0.03 mm

Materials and Methods

DESIGN OF EXPERIMENTS: 64 Cubic Specimens

Powder Feedstock: AISI316L-2.5%Cu

Metal AM Technology: L-PBF

Analyzed conditions: As-Built

Characterizations: Powder, Density Process Parameter Optimization,

Applying Machine Learning models

Mean Absolute Error

Average absolute deviation for each statistic
The same unit as the target variable
The lower, the better!

IECME 2025 Conference

Coefficient of Determination

$$-\infty < R^2 < +1$$

Level of variation in the target variable by changes in the input variables

R² =
$$\frac{\sum_{i=1}^{n} (\hat{y}_i - \bar{y})^2}{\sum_{i=1}^{n} (y_i - \bar{y})^2}$$

 $MAE = \frac{1}{n} \sum_{i=1}^{n} |y_i - \hat{y}_i|$ $R^2 = \frac{\sum_{i=1}^{n} (\hat{y}_i - \bar{y})^2}{\sum_{i=1}^{n} (y_i - \bar{y})^2}$

Politecnico di Torino

> Integrated Additive ManufacturingsPolitie

IECME 2025 Conference

Support Vector Regression

IECME 2025 Conference

gamma

R² or MAE alone can not be considered for

- comparison of prediction accuracy.
- Although the training size of 90% has the highest R², its MAE value is high.
- The **best algorithm** was **SVR**, with a training size of 80%.

di Torino

IECME

Model Verification(Comparison of actual and predicted density using SVR at 80% training size based on VED)

N. point	Actual Relative Density (%)	Predicted Relative Density (%)	Error (%)
1	90.90	92.21	1.45
2	95.00	95.03	0.04
3	97.84	97.78	0.06
4	99.15	98.93	0.22
5	98.87	99.06	0.19
6	98.52	99.05	0.53
7	98.89	97.71	1.20
8	98.46	98.07	0.40
9	97.81	98.19	0.39
10	96.44	96.64	0.21
11	97.88	96.22	1.69
12	98.58	97.48	1.12
13	97.38	97.28	0.10
14	97.05	97.42	0.38
15	97.74	96.45	1.32

Process parameters defect content relationship

Conclusions

- 1. ML techniques accurately predicted the relationship between process parameters and defect content and enhanced the building rate, thus addressing quality and productivity issues in the L-PBF process.
- The SVR model (training size: 80%) was the best model for predicting the relationship between 2. process parameters and defect content.

The SVR model achieved a 0.62% average error, demonstrating its reliability for optimizing 3. process parameters in L-PBF and minimizing material waste.

Any Question!

Machine learning assisted material development via Laser powder bed fusion process

Alireza Moradi¹, Sanae Tajalli Nobari², Amir Behjat³, Mohammad Taghian³, Luca Iuliano^{3,4}, Abdollah Saboori^{3,4}

 ¹ Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca Degli Abruzzi 24, 10129 Torino, Italy
 ² Department of Applied Science and Technology, Politecnico di Torino, Corso Duca Degli Abruzzi 24, 10129 Torino, Italy
 ³ Department of Management and Production Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
 ⁴ Integrated Additive Manufacturing Center (IAM@PoliTo), Politecnico di Torino, Corso Castelfidardo 51, 10129 Torino, Italy

16

IECME