

The 3rd International Electronic Conference on Biomedicines

12-15 May 2025 | Online

The Role of Interferon Therapy in Stabilizing Metabolic Liver Diseases

Thangavel Megala¹, Thangaraj Nandha Gopal¹, Manickasundaram Siva Pradeep², Muthurathinam Sivabalan¹, Arunachalam Yasotha³ ¹Sri Ramakrishna Mission Vidyalaya College of Arts and Science, Coimbatore - 641 020. ²United College of Arts and Science, Coimbatore-641 020. ³United Institute of Technology, Coimbatore-641 020.

INTRODUCTION & AIM

Metabolic diseases such as diabetes, obesity, and insulin resistance pose significant global health burdens. These conditions adversely affect liver function, often leading to complications like non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH). The liver, as a central organ in glucose and lipid metabolism, is particularly vulnerable to such disruptions. Interferon therapy has shown promise in mitigating liver damage and modulating immune responses. This study aims to develop a mathematical model to capture the dynamics of liver disease progression influenced by metabolic disorders. The model incorporates the effect of interferon therapy on disease transmission and treatment outcomes. The objective is to identify conditions that ensure disease control and guide effective therapeutic strategies.

RESULTS & DISCUSSION

Equilibrium Analysis:

DFE =
$$\left(\frac{\Lambda}{\mu}, 0, 0\right)$$

s* - $\gamma + \delta$ +

EE

MODEL EQUATION

We consider a compartmental model with the following state variables:

$$\begin{aligned} \frac{dS}{dt} &= \Lambda - \beta SI - \mu S \\ \frac{dI}{dt} &= \beta SI - (\gamma + \delta + \mu)I \\ \frac{dT}{dt} &= \gamma I - (\mu + \rho)T \end{aligned}$$

 $S_0 \ge 0$, $I_0 \ge 0$, $T_0 \ge 0$

S(t) : Susceptible individuals with metabolic conditions (at risk of liver complications)

I(t) : Infected individuals (with liver complications) such as NAFLD/NASH)

T(t) : Treated individuals receiving interferon therapy

$$\gamma + \delta + \mu \qquad \beta$$
 $T^* = rac{\gamma I^*}{\mu +
ho}$

Using the next-generation matrix method, the basic reproduction number is:

$$R_0 = \frac{\beta S^*}{\gamma + \delta + \mu} = \frac{\beta \Lambda}{\mu(\gamma + \delta + \mu)}$$

STABILITY ANALYSIS

- 1. If $R_0 < 1$, the disease-free equilibrium is locally asymptotically stable, and the disease will die out.
- 2. If $R_0 > 1$, the disease-free equilibrium is unstable, and the disease may persist.

CONCLUSION

This study presents a mathematical model to analyze liver complications arising from metabolic diseases and assesses the impact of interferon therapy. The model identifies critical thresholds, particularly the basic reproduction number R_0 to determine disease persistence or elimination. Interferon therapy effectively reduces R_0 promoting stability in liver health. The findings offer insights into optimizing treatment strategies for better disease control. This work contributes to informed public health interventions targeting metabolic-related liver diseases.

Table 1. Description of parameters used in the model.

Parameter	Description	Unit
Λ	Recruitment (entry) rate into susceptible class	individuals/day
β	Transmission rate from susceptible to infected	1/(individual day)
μ	Natural death rate	1/day
δ	Disease-induced death rate (from liver complications)	1/day
γ	Rate of starting interferon therapy	1/day
ρ	Recovery rate due to interferon therapy	1/day

- Megala, T., Nandha Gopal, T., Siva Pradeep, M. et al. Dynamics of re-infection in a Hepatitis B Virus epidemic model with constant vaccination and preventive measures. J. Appl. Math. *Comput.* (2025).
- 2. Megala, T., Pradeep, M.S., Yavuz, M., Gopal, T.N. and Sivabalan, M., 2024. A role of fear on diseased food web model with multiple functional response. *Physical Biology*, 22(1), p.016004.