

4th Coatings and Interfaces Online Conference

Proiect-ID 494736555

TECHNISCHE UNIVERSITÄT CHEMNITZ

Considering Scaling Aspects in Interface Design for Adhesion-Promoting Laser Structures in Polymer–Metal Hybrids

Niclas Hanisch^{a,*}, Philipp Steinert^b, Thomas Lindner^a, Hendrik, Liborius^b, Andreas Schubert^b, Thomas Lampke^a

^a Materials and Surface Engineering, Institute of Materials Science and Engineering, Chemnitz University of Technology, Chemnitz, Germany ^b Micromanufacturing Technology, Institute for Machine Tools and Production Processes, Chemnitz University of Technology, Chemnitz, Germany.

INTRODUCTION & AIM

- Combining polymers and metals in lightweight construction depends on mechanical interlocking, enhanced by surface structuring
- Laser-Beam Machining enables complex adhesion-promoting profiles

21-23 May 2025 | Online

• Suitability of Fractal Dimension as scale-independent criterion for adhesion strength prognosis reported previously

EXPERIMENTAL – Laser-Beam Machining

MODELING – Monte Carlo Method

Learn more about the Calculation Method

CONCLUSIONS

- Fractal dimension used as quantitative correlation criterion for strength prognosis
- Scale independency indicated for fractal dimension (real and modeled) and lap shear strength
 Validation of surface model for
- design and prognosis $D_{LBM} \approx D_{MC}$

* Corresponding author: niclas.hanisch@mb.tu-chemnitz.de

https://sciforum.net/event/CIC2025