

UNIVERSITY OF TECHNOLOGY IN THE EUROPEAN CAPITAL OF CULTURE CHEMNITZ Institute of Materials Science and Engineering Group of Materials and Surface Engineering 4th Coatings and Interfaces Online Conference

2025

CIC

Oxidation and wear protection of pultruded C/C composites using atmospheric plasma-sprayed environmental barrier coatings

Maximilian Grimm¹, Husam Ahmad², Marcus Knobloch³, Maik Trautmann², David Löpitz³, Thomas Lindner¹, Guntram Wagner², Thomas Lampke¹

¹ University of Technology Chemnitz, Institute of Materials Science and Engineering, Chair of Materials and Surface Engineering, D-09107 Chemnitz, Germany ² University of Technology Chemnitz, Institute of Materials Science and Engineering, Chair of Composites and Material Compounds, D-09107 Chemnitz, Germany ³ Fraunhofer Institute for Machine Tools and Forming Technology IWU, D-09126 Chemnitz, Germany

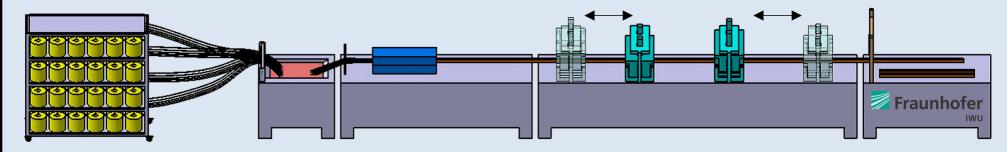
Before thermo

cyclic testing

INTRODUCTION & AIM

- C/C materials offer numerous advantageous properties (e.g. high specific strength, low thermal mass, very low coefficient of thermal expansion) making them suitable for use in high-temperature applications, <u>but</u>:
 - Quite expensive
 - Not stable in oxidative environment at high temperatures (>500°C)

$$C + O_2 \rightarrow CO_2$$

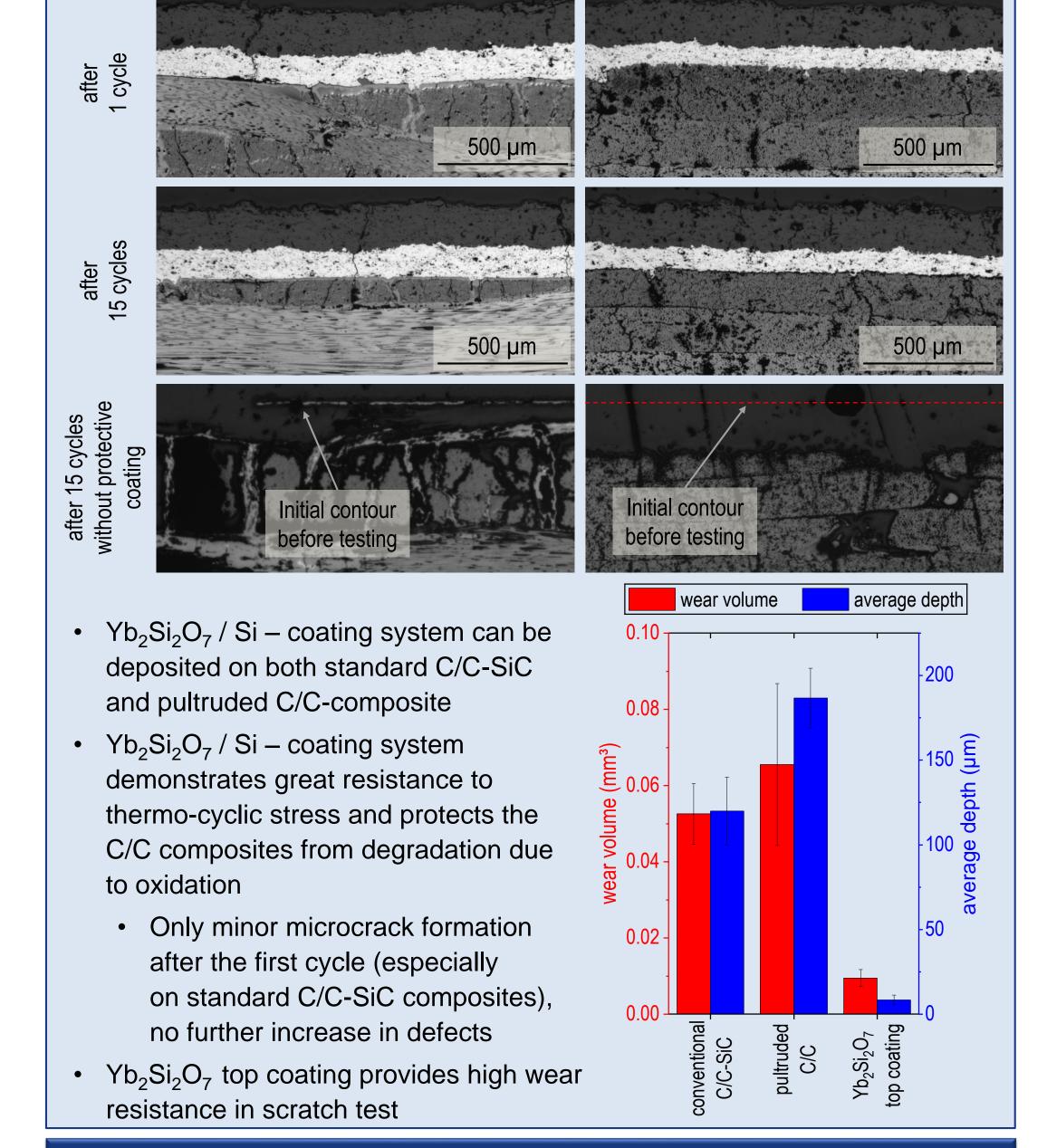

- Low wear resistance
- Solution approach:

1

Development of a new continuous production route (pultrusion) for CFRP materials for the production of C/C profiles

Space <t

- Adapting the fibre volume ratio (Higher share (>60%) favourable for pultrusion, but lower proportion (approx. 50%) better for C/C production (higher matrix content)
- Selection of the phenolic resin (C yield, viscosity, curing)



2 Pyrolysis

- Specific structure of the C/C material depending on the pultruded CFRP material (proportion of pores, open / closed porosity, ...)
- СFК С/С <u>100 µ</u>m
- Coating deposition (atmospheric plasma spraying)
 - Environmental barrier coating (protection of the C/C material against oxygen)
 - Increasing wear resistance

METHOD

- Coating of pultruded C/C- and standard C/C-SiC composites using APS with Si interlayer and $Yb_2Si_2O_7$ top coat:
 - No substrate pre-treatment except cleaning in ethanol ultrasonic bath (blasting/grinding damages fibre-matrix interface and promotes delamination)
 - Torch system: F6 (non cascaded, single anode single cathode torch)
 - Materials: Si (Amperit ® 170.084, -75+20µm) Yb₂Si₂O₇ (Metco 6157, -90+11)
- Spray parameters:

CONCLUSION

Material	Current (A) / Power (kW)	Flowrate plasma gases (I/min)		Spray distance	Traverse speed	Powder feed rate
		Ar	H ₂	(mm)	(m/s)	(g/min)
Si	520 / 35	50	8	130	0.4	14.0
Yb ₂ Si ₂ O ₇	550 / 34	50	5	110	0.4	20.5

Thermo-cyclic testing of coated samples:

- Temperature: 1000°C
- Atmosphere: Ar
- Cooling:

- Microstructure analysis before and after thermo-cyclic testing using optical microscope
- Scratch test (50N constant load, 5mm, 2.5mm/s)

Air

Pultrusion can be used to continuously manufacture CFRP profiles that can serve as the base material for C/C composites. Plasma-sprayed $Yb_2Si_2O_7$ coatings increase the wear and oxidation resistance of conventional and pultruded C/C profiles and withstand thermo-cyclic stresses. In further progress, the composite materials produced by pultrusion are further optimized, e.g. by adding Si additives (SiC formation) or multiaxial fiber orientation.

FUNDING

The results presented are part of the project: 'Development of large-scale production processes for the manufacture of ceramic oxidation-protected pultrusion profiles for high-temperature applications'.

Supported by:

on the basis of a decision

by the German Bundestag

Forschungsgemeinschaft Industrieofenbau e. V.

