

Results and discussion

First principle calculation

Ν

MA_{0.70}DMA_{0.20}GA_{0.10}Pbl₃

 $\mathsf{MA}_{0.70}\mathsf{DMA}_{0.30}\mathsf{PbI}_3$

AFM

С

 Decrease in diffusion coefficients (Pb and I around MA and DMA) → Stabilization of Pbl₆ crystal lattice DMA/GA co-addition Restricted MA mobility • Formation of hydrogen bonds between H(GA)-I)

 \rightarrow Suppression of distortion of I-Pb-I angles

4.27

4.27

1.13

2.39

-3846

Reference: H. Shimada, T. Oku, A. Suzuki, T. Tachikawa, T. Hasegawa, S. Fukunishi, Conclusion Results in Surfaces and Interfaces (2025) 100528.

- The addition of 30–35% DMA at the MA sites was effective \rightarrow Improved interfacial conditions enhanced the FF, V_{oc}, and η .
- •DMA/GA co-addition increased J_{sc} and achieved good stability \rightarrow Larger ionic sizes suppressed MA desorption.

 First-principles calculations revealed reduced total energy, increased carrier mobilities, and lowered diffusion coefficients \rightarrow Emphasized the effectiveness of DMA (and GA) addition.